
The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

- 1 -

Suffix Tree Index Structure on Go Game Records

Shi-Jim Yen and Chen-Hsin Lee1 Jr-Chang Chen2 Tai-Ning Yang3 Shun-Chin Hsu4
1Dept. of Computer Science and
Information Engineering, National
Dong Hwa University, Taiwan.

2Department of Computer and
Communication Engineering,
Ming Chuan University, Taipei,
Taiwan.

3Department of Computer
Science and Information
Engineering, Chinese
Culture University,
Taiwan.

4Department of Information
Management,
Chang Jung Christian
University, Taiwan.

1. Introduction
In computer Go, game record database analysis is an important

component. Many researchers try to apply matching learning
technique based on game records. Researches regards game
records as text strings by suitable encoding from each move to a
character, and uses the approaches of natural language processes
and statistics to acquire sequence patterns are proposed in
Nakamura (1997, 1999, 2000). In Werfetal (2003, 2004), the
authors proposed methods of learning to predict Life and Death
and score final positions in the game of Go from game records by
well designed data structure and good classifiers. Game records
are used as the training data of neural networks (Konidaris and
Nir Oren. 2002). A rule-based expert system could be build up
by knowledge acquisition from game records (Kojima and
Yoshikawa 1999). With regard to the programming techniques, a
Go playing program may contain tactical look-ahead, pattern-
matching, evaluation function and highly selective global search.
This article focuses on pattern matching.

According to huge Go collection of records, the speedy and
precise to judge next position during Go competition, and
efficiency finding pattern in million databases is the big
challenge of Computer Go programs. This is also a very
important issue in Computer Go contest.

Go’s search branching is wide and search depth is deeper. The
standard board of Go is 19*19 which is much bigger than Chess
(8*8) and Chinese Chess (9*10), furthermore, the moves of Go
game is much more than other chess games. Therefore, Go game
requires more search resource, such as operation speed and
memory space, etc., For this problem, we provide a mechanism
which apply the suffix tree algorithm to build an efficient data
structure with indexing function for huge of Go records. This can
speed up the search time for the pattern of Go, and show the
position and occur times in Go game records, and furthermore
provide the best next move for Go players.

2. Query Pattern and Suffix Tree Index Structure
Brute force algorithm is the simplest way to find the set of

patterns matching on the board is to check for each board
intersection and each pattern if it matches. However, it is not
efficiently and it needs to take plenty of time to recognize pattern
especially when Go game records are huge.

Obviously, Brute Force Algorithm is hopeless as search
technique in Go; the search space is too large and the worst case
complexity of this method is O(ds2m) where s is the size of the

board, d is the number of patterns and m the max number of
elements by pattern. The details description can refer to (T.Urvoy,
2001). The Structure of Suffix Trees is robust and filters out
impossible patterns which could instead of checking individually
each pattern.

The Go board has 3 states Empty, Black, White; in this paper,
we use three number “0”,”1”,”2” to represent “empty”, ”black”
and “white” on the board of Go. In a query pattern, use 3 bits to
express 3 possible states of every point. Bit 1 means this point
could be empty or not; bit 2 means this point could be black
stone or not; bit 3 means this point could be white stone or not.
(Yen, 1999). For example, a binary number “101” means this
point could be “White Stone” or “Empty ”, a number ”111”
express that point could be “Empty”, ”Black Stone” or “White
Stone”.

There are three possible query patterns in this article: 1. fixed
size of patterns with fixed states in certain recognized area. 2.
5*5 Fixed size of patterns with unfixed states. 3. unfix size of
patterns. The solutions are as in the follows.

2.1 5*5 fixed size of patterns with fixed states.
It is convenient to design the Go computer program by the

fixed pattern n*m. For sure the exact patterns will be more
precise and its contents will be more completely when n is
bigger; however, the space of each pattern is much bigger as well,
and knowledge database of all patterns will be extended
reduplicated. In view of this, we take 5x5 as the base patterns
size, because it contains the most of base patterns. For other
bigger range patterns, it is allmost locate at border and the
generality forms of pattern are rectangle (such as shape-size
5x10). And our technique could solve this problem as well. This
idea is similar with Mark Boon‘s published paper (Mark
Boon,1989),which mentioned 5x5 is large enough to cover more
than 95% of all shapes.
Pre-process task:

Set up recognized area according to the position of last move
on board for each Go record. Save each possible patterns
T1…T(row+5)*(col+5) on board as an integer. (Hashing methods)
Searching Pattern Process:

Find the transform query pattern to an integer P.
Find the query pattern when P = Tn

2.2 5*5 fixed size of patterns with unfixed states
In other special sates of query patterns such as, some points

must be our stone (usually means “Black Stone”), and some
points must be opponent’s stone (usually means “White stone”)
or some points must be “Empty”; sometimes, some points
mustn’t our stone, and some mustn’t opponent ‘s stone or some
must don’t care point (it means it‘s ok for our stone or opponent

Contact: Shi-Jim Yen, Dept. of CSIE, National Dong Hwa Uni.,
Taiwan, Address: No. 1, Sec. 2, Da Hsueh Rd., Shoufeng,
Hualien 97401, Taiwan. Tel: +886-3-8634031, FAX: +886-
3-8634010, E-mail address: sjyen@mail.ndhu.edu.tw

IOS-2-6

The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

- 2 -

‘s stone) To begin with extracting Go records and reading row by
row, then store into one-dimension array. We construct Suffix
Tree base on Ukkonen’s algorithm.
Pre-process task:
1. Use 3 bits to representation those special sates and each

board is transform to a string. we set up a recognize region
9*9 as a limit condition according to the position of last
move. It can reduce search space, and speed up the search
time. Sometimes, the recognize area will be extended
depend on taken numbers of stones in rows and columns on
board, when some stones were taken from board.

2. Build Suffix Tree for all Go records. We modify the suffix
tree to fit the Go game program by using the first 5
character of each suffix string store in table, which define
as “Super Nodes”, and store head position at index i in
“Super nodes” as well. Then, use simple links to jump 19
points, which provide a mechanism for quickly traversing
across sub-trees.

3. For Border-pattern, use an one-dimension array to denote
the border. Through this mechanism, we could speedy
recognize time for find the query patterns which locate at
border.

Searching Pattern Process:
Find all possible matching patterns on the Suffix Tree and the

Suffix table. Then use” Bitmapping” algorithm to verify pattern
recognize correctness.

Step1: Read the matching pattern S1 in super nodes.
Step2: Translate the query patterns Pi to all possible fixed size

patterns.
Step3: Traverse the “super nodes” of the Suffix Tree and using

the “bitmapping algorithm” to evaluate if match base on the
query pattern Pi with allow state of each point on board.

Step4: Jump to next “supper nodes” by links.
Step5: Read all sub-strings to compare with query pattern Pi.
Step6: Use the “bitmapping algorithm” to evaluate if match or

not.
Step7: Repeat Step4 to Step6 until all super nodes are searched.
Step8: Output results.

2.3 Unfixed size of patterns.
Search the query pattern on the Suffix tree row by row.
Pre-process task:
Build suffix trees for all Go records as in Case 2.

Searching Pattern Process:
Step1: Load query pattern P
Step2: Count total rows of P and store into variable ” i”.
Step3: Read query pattern rowj (j++,j≤i)
Step4: Traverse suffix Trees and find out all possible matching
patterns with limit condition of allow states of patterns on board.
Step5: Store the position (pos) of first character for all possible
match patterns on board into a table.
Step6: Let a formula to compute out a num for all possible
matching patterns each row, and then determine if any number in
each row is equal. (see table 3-13)
Formula: numi = pos-19* k (0≤k<i)
Step8: Output Result.

3. Conclusion
According to huge Go collection of records, the speedy and

precise to judge next position during Go competition, and
efficiency finding pattern in million databases is the big
challenge of Computer Go programs. For this problem, we
provide a mechanism which apply the suffix tree algorithm to
build an efficient data structure with indexing function for huge
of Go records. Suffix trees are efficient access to all substrings of
a Go string, and each of them can be constructed and represented
in O(T) time and space, where T is the size of the board.

Moreover, this article address to three mechanisms that
contain most situation of pattern matching on Go, such as varied
pattern size, varied pattern states, query pattern on border, taken
stones.

References
1. D.Gusfield. (1997) Algorithms on Strings, Trees and

Sequences: Computer Science and Computational Biology.
Cambridge University Press.

2. George Konidaris Dylan Shell Nir Oren. (2002) ”Evolving
Neural Networks for the Capture Game”, School of
Computer Science Uni. of the Witw-atersrand, Johannesburg.

3. Giegerich, R., Kurtz, S. & Stoye. J. (2003) Efficient
implementation of lazy suffix trees. Software-Practice and
Experience. 33:1035-1049.

4. He, Y.J. (2005) An Efficient Multi-Feature Index Structure
for Go Game Records. NDHU, Master Thesis.

5. Hsu, K. D. (2004) Pattern reorganization in Go game records.
NDHU, Thesis for the degree of Master.

6. Kurtz S.(1999) Reducing the space requirement of suffix
trees. Software-Practice and Experience 29 (13):1149-1171.

7. NAKAMURA, T. & KAJIYAMA,T. (1997) “Feature
Extraction from Encoded Texts of Moves and Categorization
of Game Records”, Department of AI, Kyushu Institute of
Technology.

8. NAKAMURA,Teigo.(1999) “Acquisition of Move Sequence
Patterns from Game Record Database Using n-gram
Statistics”, Department of AI, Kyushu Institute of Technology.

9. T. Urvoy and gnugo team (2001) Pattern matching in go with
DFA.

10. http://tanguy.urvoy.free.fr/Papers/dfabstract.pdf
11. Tata S., Richard, A., Jignesh, M. (2004) Practical Suffix Tree

Construction. University of Michigan. Proceeding’s of the
30th VLDB Conference.

12. Takuya Kojima Atsushi Yoshikawa (1999) ”Knowledge
Acquisition from Game Records”, NTT Communication
Science Labs.

13. Teigo NAKAMURA, Takashi KAJIYAMA.
(2000) ”Automatic Acquisition of Move Sequence Patterns
from Encoded Strings of Go Moves”, Department of
Artificial Intelligence, Kyushu Institute of Technology.

14. Weiner, P. (1973) Linear Pattern Matching Algorithms.
Proceedings of the 14th Annual Symposium on Switching and
Automata Theory.

15. Werf, E.C.D., Herik,,H.J.,& Uiterwijk , J.W.H.M. (2004):
“Learning to Score Final Positions in the Game of Go”,
Institute for Knowledge and Agent Technology, Department
of Computer Science, Universiteit Maas-tricht.

16. Wikipedia. http://en.wikipedia.org/wiki/Suffix_tree
17. Yen, S. J. (1999): Design and Implementation of a Computer

GO Program JIMMY. Ph.d. Thesis, National Taiwan
University, Taiwan. (in Chinese)

http://tanguy.urvoy.free.fr/Papers/dfabstract.pdf
http://en.wikipedia.org/wiki/Suffix_tree

	1. Introduction
	2. Query Pattern and Suffix Tree Index Structure
	2.1 5*5 fixed size of patterns with fixed states.
	2.2 5*5 fixed size of patterns with unfixed states
	2.3 Unfixed size of patterns.

	3. Conclusion
	References

