
The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013 

- 1 - 

A Supervised Learning Method for Chinese Chess Programs 

Wen-Jie Tseng
1
, Jr-Chang Chen

2*
, I-Chen Wu

1
, Ching-Hua Kuo

1
, Po-Han Lin

23
 

1
 Department of Computer Science, National Chiao Tung University 

2
 Department of Information & Computer Engineering, Chung Yuan Christian University 

3
 Department of Computer Science & Information Engineering, National Central University 

The Elo-rating system and the Minorization-Maximization (MM) algorithm have been used for pattern learning in the 

game of Go. This paper proposes a learning method based on the Elo-rating and MM to help adjust feature weights in 

Chinese chess programs, enhancing position evaluation accuracy. The learning method automatically adjusts feature weights 

iteratively according to expert game records. In experiments, we demonstrate the method by adding three new features, 

including a different way of calculating piece mobility. The experimental results show the playing strength of our Chinese 

chess program, CHIMO, has improved, yielding a win ratio of 61.7% against the pre-learned version. In addition, we also 

justify the method by demonstrating the learned feature weights for piece mobility.  

 

1. Introduction 

Chinese chess is one of the most popular two-player chess-like 

games. It has a long history and very important cultural status. It 

was estimated in [CBCGAC 2013] that about 200 million people 

play Chinese chess worldwide. In game theory, Chinese chess 

has higher game-tree and state-space complexities than chess 

[Herik 2002]. 

Players in Chinese chess conventionally play as red and black 

sides, and the red side moves first. Each player has sixteen pieces 

on the board, including one king (K), two advisors (A), two 

elephants (E), two rooks (R), two horses (H), two cannons (C), 

and five pawns (P). In the game, players move alternately and 

their main goal is to capture the opponent’s king.  

Chess or chess-like game programs have been an important 

research topic in artificial intelligence [Allis 1994][Campbell 

2002]. Alpha-beta search (αβ search) and quiescence search 

(QS) [Marsland 1992] are the most common algorithms used in 

Chinese chess programs. An evaluation function [Knuth 1975], 

used in search algorithms to evaluate a position by giving it a 

score, may influence the search tree and even the search result.  

In many game-playing programs, when a position   is being 

evaluated, each feature of    is given a weighted score and 

eventually the sum of all feature weight scores is returned as the 

score of  . For example, if one rook is evaluated at 1000 points 

and one pawn is evaluated at 100 points, a position with one rook 

and two pawns is evaluated at 1×1000+2×100=1200 points. For 

accuracy, Chinese chess programs usually try to evaluate a large 

number of features. For example, our Chinese chess program 

CHIMO, which has won a silver medal in ICGA Tournaments, 

uses about 1500 features during evaluation.  

However, manually adjusting each feature weight accurately is 

time-consuming. For this problem, [Cheng 2006] proposed a 

method to automatically obtain weights for certain features using 

statistical methods. His method counts the appearance of pieces 

in different locations in many expert game records and converts 

the counted value to scores using self-defined formulas. However, 

the method can only be applied to specific features for evaluating 

pieces in different locations. [Kao 2009] also proposed a genetic 

algorithm method to automatically adjust feature weights, for 

which any feature can be applied to. However, the method 

requires considerable computation time for self-play testing after 

each generation in order to choose good feature weights into the 

next generation.  

In this paper, we propose a supervised learning method based 

on the Minorization-Maximization (MM) algorithm that adjusts 

feature weights of Chinese chess programs automatically by 

learning from expert game records. Moreover, when new features 

are added, the method can adjust new feature weights rapidly and 

accurately. Most importantly, the method uses QS to evaluate the 

moves in game records to avoid being affected by the horizon 

effect.  

In our experiments, we applied the method to CHIMO with 

three newly added features. The new features improved the 

playing strength of CHIMO, which was verified through self-

play games against its original version.  

2. Related Work 

Section 2.1 introduces the main algorithms used in computer 

Chinese chess programs. Section 2.2 introduces the design of the 

evaluation function in CHIMO. Section 2.3 explains how we 

applied the Elo-rating system and Bradley-Terry model to 

features and describes the MM algorithm used for learning.  

2.1 Alpha-beta search and quiescence search 

αβ  search is the main algorithm used in Chinese chess 

programs to look for the best move of a position. It is a kind of 

depth-first search and always with a limited depth because the 

game tree is too huge to traverse in a limit time. When the search 

reaches a leaf node of the limited depth, it will evaluate the node 

and assign a score.  

QS is a common technique used to evaluate leaf nodes for 

avoiding the horizon effect caused by depth limitation. 

Evaluating the leaf nodes only in the limited depth is very 

Contact: Jr-Chang Chen, Department of Applied Mathematics, 

Chung Yuan Christian University, No. 200, Chung Pei Rd., 

Chung Li, Taoyuan County 32023, Taiwan (R.O.C.), phone: 

+886-3-2653131, email: jcchen@cycu.edu.tw 

 

 

3C3-IOS-2-8 



The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013 

- 2 - 

dangerous because they may have noisy moves which may be 

able to cause a big change in deeper depths, such as check or 

capture moves. For example, a position that is evaluated as 

earning a pawn with the given depth may in fact lose a rook in 

the next move. In this situation, the evaluation function may 

inaccurately evaluate a position due to the depth limitation. 

Unlike αβ search, QS looks for noisy moves and evaluates 

only quiescent (quiet) positions which have no noisy moves.  

2.2 The evaluation function and features in CHIMO 

The evaluation function is one of the important factors that 

highly influence the playing strength of Chinese chess programs. 

[Yen 2004] mentioned five kinds of approximate features 

considered in the evaluation component of Chinese chess 

programs, including (1) strength of piece, (2) location of piece, 

(3) mobility of piece, (4) threats and protection between pieces, 

and (5) dynamic adjustment according to the situation. CHIMO 

implemented (1) to (4), and king safety.  

Strength of piece is the most common feature in evaluation. In 

general, the side that has more powerful pieces is more 

advantageous. Each piece is evaluated and given a score 

according to its contribution to the game. A rough estimate can 

be obtained by just looking up each side’s pieces.  

The location of each piece is evaluated according to its 

influence. Some locations are easier to attack from or defend 

against opponents, while others are harder, depending on the 

particular piece’s rules for movement. Thus, two pieces of the 

same kind which occupy different locations need to be given 

different scores.  

Mobility of piece is about how flexible a piece is. The more 

mobile a piece is, the more means of attack or defense it has. 

Thus a piece that has more choices when moving is more 

powerful generally. In practice, CHIMO only considers the 

mobility of rooks and horses. The mobility in CHIMO is 

evaluated linearly with respect to mobility quantity, the number 

of movable locations without being threatened.  

Both attacking and attacked pieces are considered when 

evaluating threats and protection between pieces. Attacking 

pieces are under risk of being recaptured, so less powerful 

attacking pieces are evaluated higher, since this is essentially a 

trade between the attacking piece and the attacked piece. For the 

attacked pieces, it is obvious that more valuable pieces are 

evaluated higher.  

Finally, king safety is also important because the main way to 

win the game is to capture the opponent’s king. CHIMO not only 

considers the threatened locations around the king but also 

whether attacking pieces can check in the next ply.  

2.3 The Bradley-Terry model and the MM algorithm 

The Elo-rating system [Coulom 2007] is a rating method that 

calculates the relative strength between players and has been 

used for chess and other games. In the system, each player is 

evaluated and assigned a rating value which indicates his/her 

strength, and a player with stronger skill is evaluated with a 

higher rating value.  

The Bradley-Terry model [Hunter 2004] is used to analyze the 

probabilities of paired competition results among individuals. 

One of its generalized versions can deal with competitions 

among teams of players with an additional assumption that the 

strength of a team is evaluated as the product of its members’ 

strengths.  

 We analyze features using the generalized Bradley-Terry 

model. First, a feature is seen as an individual and multiple 

features in a single position are seen as a team. Thus, a feature 

weight is viewed as the strength of the individual, while position 

strength is viewed as the strength of the multiple features 

associated with the position. Second, choosing a move from a 

position is seen as a competition among all moves, and the move 

chosen by experts is the winner.  

Based on the model, we can compute the likelihood that a 

move would also be chosen by experts, and the objective is to 

maximize this likelihood. The procedure of maximization can be 

seen as the program learning evaluation from expert game 

records. An MM algorithm [Coulom 2007], which adjusts each 

feature’s strength iteratively with a minorizing function, is used 

to find maximum likelihood estimates in the Bradley–Terry 

model.  

3. Learning Method 

This section introduces the new features for learning and the 

evaluation method for candidate moves. Section 3.1 introduces 

new features added into CHIMO. In section 3.2, we apply QS to 

move evaluation to avoid the horizon effect.  

3.1 New features and learning 

Our objective is to adjust feature weights to improve the 

accuracy of the evaluation function. However, current feature 

weights in CHIMO are accurate enough due to years of manual 

adjustment. In order to distinguish from the original features, we 

design three extra features for experimentation, for which the 

weights are unknown. Finally, self-play between different 

versions of CHIMO is performed for comparison.  

The new features are listed as follows: 

 New mobility (NM): We change the way mobility of pieces 

are evaluated. The original approach where the evaluated 

score is linearly dependent on the mobility quantity 

(mentioned in 2.2) may not be accurate in reality. The new 

way to evaluate mobility is to look up mobility tables for 

different mobility quantities.  

 Connected advisors/elephants (CAE): The advisor and the 

elephant are important defending pieces. A common 

strategy is to let advisors (or elephants) protect each other, 

referred to as connected advisors (or connected elephants). 

Because these two strategies share the same mechanism, 

we can refer to them collectively as sets of connected 

advisors/elephants (CAE). This feature is often used to 

prevent the king from being attacked directly by the 

opponent’s attacking pieces.  

 Protected river-crossed pawns (PRP): Pawns are allowed to 

move differently once they have crossed the river, similar 

to pawn promotion in chess. Therefore, river-crossed 

pawns (RP) are more powerful than those pawns that have 

not yet crossed and PRPs can create threats for more 

opponent pieces. However, unprotected RPs are more 

likely to be captured. 



The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013 

- 3 - 

For each newly designed feature, we use the MM algorithm to 

update its weight. Every iteration of learning updates all feature 

weights once. Learning ends when all feature weights converge 

to its respective value. The adjustment allows the evaluation 

function to work more like experts within a collection of expert 

game records.  

3.2 QS for learning  

For reasons similar to the horizon effect, it is inaccurate for 

evaluation to take positions which are only one-depth away from 

the root into consideration because these positions may have 

noisy moves. For accuracy, we apply QS to evaluate candidate 

moves in our learning method.  
 

 
Figure 1. The evaluation of positions in game records. 

When using QS to evaluate a move, we use the features of the 

leaf positions returned by QS for learning. As illustrated in 

Figure 1, a’, b’, and c’ are the search results from QS. Therein, 

the leftmost move is chosen by experts. It is more reasonable that 

the competition (choosing a move) should be among a’, b’, and c’ 

instead of a, b, and c.  

4. Experiments and Results 

We performed experiments for all the new features mentioned 

above. This section describes them and their results. Section 4.1 

explains the experimental environment, including learning data, 

self-play, and some positions inappropriate for learning. Section 

4.2 describes the experimental results in different learning 

schemes, including single, sequentially, and simultaneously. 

Section 4.3 is the comparison between using and not using QS 

for evaluating candidate moves.  

4.1 Experimental environment 

Expert game records are collected as learning data from many 

websites, including Xiangqi Arena [Movesky 2013]. The records 

are played by players with Elo-rating higher than 2350.  

In our implementation, the iterations end when the update is 

less than 5%. After learning from game records, self-play 

between the learned version and the original version is conducted 

for comparison. The only difference between these two versions 

is the evaluation function. We chose 107 familiar testing 

positions from our opening database to initiate self-play. Each 

version of CHIMO played each position twice, taking red and 

black sides once respectively for a total of 214 played games. 

The game results are recorded and the win ratio is defined as 

follows.  

 
            

                     
  

Some positions of game records are inappropriate for learning 

because they are too unstable to be precisely evaluated by the 

evaluation function. In such positions, some moves can cause a 

win or loss and the evaluation function cannot account for that. 

The inappropriate positions which may cause noise are removed 

from learning.  

For example, checking or checked positions are removed 

because particular moves are forced regardless of the evaluation 

function. For checking positions, it is obvious that the most 

prioritized moves are those that capture the opponent’s king. On 

the other hand, in checked positions, the most prioritized moves 

are those that prevent the king from being captured. 

4.2 Experimental results 

In our experiments, features can be added sequentially or 

simultaneously. First, we added each feature individually. The 

self-play results are listed in Table 1 and the W-L-D column 

presents the game results against the original version for win, 

loss, and draw respectively. The enhancement of the win ratio of 

NM is more apparent than others.  
 

Features W-L-D Win ratio 

NM 68-41-105 56.3% 

CAE 44-42-128 50.5% 

PRP 54-41-119 53.0% 

Table 1. Self-play results of learning single features. 

Next, we tried adding features sequentially, as listed in Table 2. 

For example, for the learning sequence <NM, CAE, PRP>, the 

feature NM is learned first, then CAE, and finally PRP.  

Feature <NM, CAE> has the best result within Table 2 and 

outperforms even <NM, CAE, PRP>. The result shows that 

adding new features one by one does not necessarily improve the 

win ratio. This may be due to interaction between features. For 

example, a piece aiming to protect other pieces may need to 

sacrifice mobility to do so.  
 

Features W-L-D Win ratio 

<NM, CAE> 72-34-108 58.8% 

<NM, CAE, PRP> 63-42-109 54.9% 

<NM, PRP> 61-46-107 53.5% 

<NM, PRP, CAE> 59-36-119 55.4% 

<CAE, NM> 55-44-114 52.3% 

<CAE, NM, PRP> 65-40-109 55.8% 

<CAE, PRP> 52-58-104 48.6% 

<CAE, PRP, NM> 70-39-105 57.2% 

<PRP, NM> 68-49-97 54.4% 

<PRP, NM, CAE> 55-42-117 53.0% 

<PRP, CAE> 59-38-117 54.9% 

<PRP, CAE, NM> 74-52-88 55.1% 

Table 2. Self-play results of learning features sequentially. 

Finally, we tried learning combinations of two or three new 

features simultaneously. The self-play results are listed in Table 

3. The combination of {NM, PRP} outperforms other 

combinations of two and the combination of all three achieved 

the best result than other experiments in this paper. This implies 

that simultaneous learning of feature weights is superior. 
 

Features W-L-D Win ratio 

{NM, CAE} 67-51-96 53.7% 

{NM, PRP} 72-41-101 57.2% 

{CAE, PRP} 53-57-104 49.1% 

{NM, CAE, PRP} 89-32-93 63.3% 

Table 3. Self-play results of learning features simultaneously. 

4.3 Experiments for QS  

In order to validate that QS is better when evaluating candidate 

moves, we tried two versions of learning. One used QS and 

another used only the evaluation function. The results in Table 4 



The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013 

- 4 - 

show that using QS is better. Moreover, the result of using just 

the evaluation function is even worse than the original version in 

some cases.  
 

Features 

QS evaluation function 

W-L-D 
Win 

ratio 
W-L-D Win ratio 

{NM} 68-41-105 56.3% 41-123-50 30.8% 

{CAE} 44-42-128 50.5% 43-59-112 46.3% 

{PRP} 54-41-119 53.0% 52-57-105 48.8% 

{NM, CAE, PRP} 89-32-93 61.7% 57-43-114 53.3% 

Table 4. Self-play results of using QS. 

5. Discussion  

The experiment for the feature NM obtained, in general, 

higher win ratios. Intuitively, higher mobility results in a higher 

score, and higher mobility should always be better than lower 

mobility. Due to the marginal effect, a piece that already has 

enough mobility does not need more mobility.  
 

 
Figure 2. Mobility of piece in mid-game and endgame. 

Figure 2 shows the learned weights (Y-axis) for NM in 

different mobility quantities (X-axis, at most 17 and 8 for rook 

and horse respectively). The case where the mobility of rook is 

zero in endgame is unusual because the situation rarely occurs in 

game records (too few to learn). This exception aside, the other 

weights (especially horse mobility) fit the tendency mentioned 

above roughly. However, surprisingly, the rook, with the highest 

mobility, earns relatively lower score. We think the reason is that 

the rook is the most powerful piece in Chinese chess and human 

players usually use it to attack or defend instead of just keeping it 

flexible with high mobility.  
 

  

Figure 3. An example for rook mobility. 

Figure 3 shows an example in endgame. The black rook can 

move to locations (dot marks) to get highest mobility. However, 

such moves gain no advantage and waste a valuable ply. In this 

case, most experts will not choose these moves, and 

consequently, the feature weights for high rook mobility 

quantities are decreased. This example also shows that rooks 

during the endgame have more opportunities to obtain highest 

mobility. Moreover, the red rook with a lower mobility is 

actually more valuable than the black one with higher mobility 

because it threatens to capture the two black elephants.  

6. Conclusion 

This paper applied the Bradley-Terry model to expert game 

records and used the Elo-rating system to calculate feature 

weights. Based on the MM algorithm, this paper proposed a 

supervised learning method to automatically adjust feature 

weights for Chinese chess programs. To solve the horizon effect, 

we use QS to avoid inaccuracy of candidate move evaluation. 

We designed and implemented new features for learning and 

adjusted feature weights using the learning method proposed in 

this paper. For each new feature, CHIMO achieved different 

degrees of win ratio improvement, verified by self-play against 

the original version.  

Through experiments, we discovered that learning features 

simultaneously is superior to sequentially. We also discovered 

that the best rook location is not the ones with the highest 

mobility, which may seem counter-intuitive at first. A 

comparison was made between using QS and using just the 

evaluation function. The learning result is more accurate when 

using positions returned from QS than those in one-depth. 

After learning all new features, CHIMO achieved a win ratio 

of 61.7% against the original version. This implies the learning 

method can improve the playing strength of our Chinese chess 

program.  

References 

[Allis 1994] Allis, L.V., Searching for Solutions in Games and Artificial 

Intelligence, Ph.D. Thesis, University of Limburg, Maastricht, The 

Netherlands, 1994.  

[Campbell 2002] Campbell, M., Hoane, Jr., A.J., and Hsu, F.-H., Deep 

Blue, Artificial Intelligence, 134:47-83, 2002.  

[Cheng 2006] Cheng, M.-C., The Chess Location Evaluation Tables of 

Chinese Chess Program, Master Thesis, Department of Engineering 

Science, National Cheng Kung University, 2006.  

[CBCGAC 2013] China Board and Card Games Administrative Center 

(CBCGAC), Xiangqi – the 1st world mind sports games, available at 

http://2008wmsg.chinaqiyuan.com/en/others/2008-09-27/ 

1642019.html, March 2013.  

[Coulom 2007] Coulom, R., Computing Elo Ratings of Move Patterns in 

the Game of Go, ICGA Journal, 30(4):198–208, 2007.  

[Herik 2002] Herik, H.J. van den, Uiterwijk, J.W.H.M., and Rijswijck, J. 

van, Games solved: Now and in the future, Artificial Intelligence, 

134:277–311, 2002.  

[Hunter 2004] Hunter, D.R., MM algorithms for generalized Bradley-

Terry models, The Annals of Statistics, 32(1):384–406, 2004.  

[Kao 2009] Kao W.-L., The Automatically Tuning System of Evaluation 

Function for Computer Chinese Chess, Master Thesis, Department of 

Computer Science, National Chiao Tung University, 2009. 

[Knuth 1975] Knuth, D.E., and Moore, R.W., An Analysis of Alpha-Beta 

Pruning, Artificial Intelligence, 6:293-326, 1975. 

[Marsland 1992] Marsland, T.A., Computer Chess and Search. S. Shapiro 

(Ed.), Encyclopedia of Artificial Intelligence (2nd ed.), Wiley, New 

York, pp. 224–241, 1992.  

[Movesky 2013] Movesky Inc., Xiangqi Arena (弈天棋缘), available at 

http://www.chesssky.net/, March 2013.  

[Yen 2004] Yen, S.-J., Chen, J.-C, Yang, T.-N., and Hsu, S.-C.. 

Computer Chinese Chess, ICGA Journal, 27(1):3–18, 2004.  

http://2008wmsg.chinaqiyuan.com/en/others/2008-09-27/%0b1642019.html
http://2008wmsg.chinaqiyuan.com/en/others/2008-09-27/%0b1642019.html

