
The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

2E4-OS-09a-6

A Survey of Parallel Local Search for SAT

Alejandro Arbelaez∗1 Philippe Codognet∗2

∗1JFLI / University of Tokyo ∗2JFLI-CNRS / UPMC / University of Tokyo

Local search algorithms are widely used to tackle combinatorial problems in several domains, one of the main
features of these algorithms lies in the fact that they can tackle very large problems. Moreover, an interesting
possibility is the potential speedup obtained by executing multiple copies of the sequential algorithm. In this
paper, we review the current state-of-the art and future trends of parallel local search algorithms for the SAT
problem, one the most important NP-complete problems. Generally speaking, these algorithms can be broadly
classified into two categories: parallel portfolios, where several algorithms compete and cooperate to solve a given
problem instance and multi-flip algorithms where several flips of the variables are performed at the same time.

1. Introduction

The Boolean satisfiability problem (SAT) consists in de-

termining whether a given formula in Conjunctive Normal

Form is satisfiable or not. The formula is a conjunction

of clauses and each clause is a disjunction of variables (a

literal or its negation). SAT solvers are widely used in sev-

eral application domains, including: computational biology,

software/hardware verification, planning, etc.

Today, parallel architectures provide an interesting op-

portunity to improve the performance of SAT solvers. The

computational benefit of parallel SAT solving can be ob-

served in both capacity solving and speedup. Capacity solv-

ing refers to the number of solved instances within a given

time limit, and speedup refers to the ability of reducing the

execution time (w.r.t. the sequential solver) to solve a given

problem instance.

A classical manner to devise a parallel local search solver

consists in executing multiple copies of different algorithms

(or the same one with different random seeds) with or with-

out cooperation. This approach is also known in the SAT

literature as a parallel portfolio. Another way to parallelize

the local search procedure consists in exploring the neigh-

borhood in parallel at a cost of reconciling partial informa-

tion in order to decide the best action. Not surprisingly,

most researchers have focus their attention on the parallel

portfolio approach as it provides two general advantages.

First, it requires no extra work to implement, and second

it has been theoretically and practically proven to be pow-

erful in a wide range of domains; moreover the portfolio

technique is not affected by the Amdahl’s law. We recall

that the Amdahl’s law indicates that the parallel speedup

of a given algorithm is bounded by the sequential portions

of the code.

The goal of this paper is provide a literature review of the

main approaches in the context of SAT local search algo-

rithms and highlighting a set of future trends in this area.

This paper is organized as follows: Section 2 presents a

general description of local search algorithms; Section 3 de-

Contact: Alejandro Arbelaez, JFLI / University of

Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo-Japan, and
arbelaez@is.s.u-tokyo.ac.jp

scribes the most remarkable parallel local search approaches

for SAT; Section 4 presents a global perspective of the fu-

ture trends of local search for SAT; and Section 5 presents

general conclusions.

2. Local Search for SAT

Algorithm 1 shows a generic scheme for a local search

algorithm to solve a given SAT instance. The algorithm

starts with an initial assignment for the variables (usually

random), then iteratively identifies a variable and flips the

truth value of the selected variable (see [8] for a complete

presentation of variable selection heuristics). The selected

variable usually minimizes the number of unsatisfied clauses

in the problem, however, from time to time random selec-

tions are performed in order to avoid search stagnation.

The stopping criteria for the algorithm is either a timeout

or failure to find a solution after a given number of itera-

tions.

Algorithm 1: Local Search

Start with initial assignment A;

repeat

if A is a solution then

return A;

end

x := select-variable(A);

A := A with x flipped;

until stopping criteria is met ;

return ‘No solution found’ ;

Historically, GSAT [18] and WalkSAT [16] are the most

important local search algorithms for the SAT problem.

GSAT selects the variable which achieves the greatest re-

duction in the number of unsatisfied clauses in the formula.

WalkSAT selects, uniformly at random, an unsatisfiable

clause c and from c selects (using a given heuristic) the

most suitable variable to be flipped.

1



The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

3. Parallel Local Search for SAT

In this section, we present a detailed presentation of the

most remarkable parallel local search algorithms for the

SAT problem.

3.1 Portfolio of local search algorithms
[12] belongs to the portfolio category, in this solver several

copies of the gNovelty+ algorithm are executed in parallel

without communication until an assignment which satisfies

all the classes is obtained or a given timeout is obtained;

gNovelty+ obtained a gold medal in the 2009 SAT compe-

tition (random category, parallel track).

In [5] the authors proposed seven strategies to exploit

cooperation in parallel local search. In this framework,

each process exchanges the best assignment for the vari-

ables found so far with other processes in order to properly

craft a new starting point. The strategies range from a

voting mechanism, where each algorithm suggests a value

for the variables, to probabilistic constructions. Among

these strategies Prob-NormalizedW exhibited an outstand-

ing performance and obtained a silver medal in the SAT’11

competition (random category, parallel track). In Prob-

NormalizedW the new assignment is carefully formulated to

ensure that better values for the variables (w.r.t the num-

ber of unsatisfiable clauses) have greater probability of be-

ing used, but at the same time poor quality values for the

variables still have a small probability of being used.

However, when moving to massively parallel systems, [3]

identified two main limitations in prob-NormalizedW : (1)

an important communication overhead and (2) an excessive

diversification which leads to restarting from quasi-random

assignments for the variables. These two limitations were

overcome by defining groups of solvers of limited size (e.g.,

16 processes) and limiting cooperation to members of the

same group only, whereas computations between different

groups run independently.

Recently, [4] conducted an empirical evaluation of the

speedup of several local search algorithms for SAT, includ-

ing: Sparrow [6], AdaptiveNovelty+ [9], PAWS [22], and

VW [13] on four set of well-known benchmark families, i.e.,

Quasigroups [1], random, verification [7], and crafted. The

empirical findings in this paper suggest that the speedup

of a given algorithm varies from one instance to another,

however, from a global perspective instances from the same

benchmark family exhibit a similar shape in the speedup

curve up to few hundreds of cores; the speedup is almost

linear (or ideal) for crafted and verification instances, and

sub-linear for random and quasigroup instances. It is also

worth noticing that the speedup for a small subset of in-

stances is super-linear. This phenomenon is formally ex-

plained in [19] for randomized algorithms; roughly speak-

ing, the speedup factor is related to the runtime distribu-

tion of the sequential algorithm, for instance [19] presents

a hypothetical situation in which the algorithm exhibits a

perfect lognormal distribution (with µ=1 and σ=2), thus

the speedup is super-linear up to an important number of

cores, however, due to the properties of the lognormal distri-

bution, the speedup become sub-linear after a given number

of cores.

3.2 Portfolio of hybrid algorithms
Interestingly, the parallel portfolio approach also allows

a straightforward combination of systematic and stochastic

search methods, which is indeed one of the ten challenges

in the area of propositional reasoning and satisfiability test-

ing [17].

Challenge 7: Demonstrate the successful combination of

stochastic search and systematic search techniques, by the

creation of a new algorithm that outperforms the previous

examples of both approaches.

MiniWalk [11] proposes a framework to combine a com-

plete solver (MiniSAT) and an incomplete one (WalkSAT)

to solve the MaxSAT problem. MiniWalk executes both

solvers in parallel and uses MiniSAT to guide WalkSAT to

promising areas of the search space. On one hand, Min-

iSAT stores the current state for each variable in the prob-

lem, i.e., unassigned, true, and false. On the other, at each

iteration of the local search algorithm, MiniWalk flips the

selected variable iff the state reported for MiniSAT is unas-

signed, otherwise the parallel solver forces WalkSAT to use

the same truth value for the variable as the one reported

for MiniSAT.

In [24] the authors proposed a hybrid algorithm which

works in two stages. In the first stage, the algorithm ex-

ecutes a DPLL-like algorithm to divide the problem space

into sub-spaces. Thus, during the second stage each sub-

space is allocated to different processors running a given

local search algorithm (WalkSAT), the global search is

stopped as soon as a solution is obtained or after given

timeout is reached.

3.3 Multiple flips
PGSAT [14] is a parallel version of the GSAT algorithm.

In this algorithm the entire set of variables is divided into

τ subsets and allocated to different processors. At each it-

eration of the local search process, if no global solution has

been obtained, the algorithm uses the GSAT heuristic to

select and flip the best variable for each subset. An inter-

esting observation of this work is that the parallel speedup

increases as τ (number of processors) increases up to a given

threshold τopt, after this point the performance drops con-

siderably; moreover this threshold varies from instance to

instance. Interestingly, there is a strong empirical evidence

that the optimal value (τopt) for random and structured

instances is correlated to the average connectivity of the

corresponding variable-clause graph.

PGWSAT [15] extends PGSAT by adding random walks

to the local search procedure. In this way, with a proba-

bility wp the algorithm selects a random variable from an

unsatisfied clause, and with probability wp uses the PGSAT

algorithm to flip multiple variables at the same time. The

new algorithm outperforms PGSAT on a set of random 3-

SAT instances around the phase transition region.

[21] shows a parallel version of genSAT, a generalization

of the GSAT procedure. Unlike the GSAT procedure which

selects the variable with the largest improvement in the

objective function, breaking ties uniformly at random; gen-

2



The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

SAT eliminates the tie-breaking mechanism and flips all the

variables with the overall best improvement. In the parallel

version of genSAT, the authors propose a method, based

on Boltzmann networks, which selects an independent sub-

set s of variables and flips the truth value, in parallel, of all

the variables in s. The experimental validation showed that

this framework usually requires fewer flips that the original

GSAT method.

4. Future Trends

Up to now, most parallel local search algorithms for SAT

have been designed for multi-core machines or small clus-

ter with a few tens of cores. A key question is therefore to

know whether this approaches scale up to massively par-

allel systems, i.e. with thousands of cores. To investigate

this field it would be necessary to study the capacity solv-

ing and speedup of local search solvers taking into account

the following three research directions: cooperation in local

search for SAT; building statistical models to obtain the

maximal speedup factor of new and existing solvers; and

exploiting difference sources of parallelism (e.g. GPUs) to

improve performance.

Moreover, motivated by the demonstrated importance of

cooperation in local search for SAT, one possible research

direction is to design a modeling language to extend the co-

operative framework and eliminate the implementation de-

tails induced in the use of parallel libraries such as openMP

and MPI. This modeling language shall focus the attention

on designing cooperative strategies to tackle a wide range

of benchmark families. Moreover, these new cooperative

strategies should maintain a trade-off between intensifica-

tion and diversification. Intensification refers to the ability

of exploring promising regions of the search space, while

diversification refers to the ability of searching unexplored

areas of the search space.

Local search algorithms include several randomized com-

ponents. Since their runtimes depend on these random

choices, it can vary from one run to the other. Indeed,

this feature allows the prediction of the parallel perfor-

mance of a given local search algorithms by studying the

solving time of the sequential algorithm as a probability

distribution. Taking this into account, in [23] the authors

propose a methodology, based in order statistics, to pre-

dict the parallel performance of executing multiple copies

in parallel of a given local search algorithm without coop-

eration. Broadly speaking, the methodology consists in ap-

proximating the empirical sequential runtime distribution

by a well-known statistical distribution (e.g. exponential or

lognormal) and then derivate the runtime of the parallel ver-

sion of the solver. This method is related to order statistics,

a rather new domain of statistics, which is the statistics of

sorted random draws. Interestingly, extensive experimental

results indicates the the predicted performance accurately

matches the performance of the empirical data.

Interestingly, the prediction of the parallel performance

of a given local search algorithm might have important im-

plications in other areas, such as automatic parameter tun-

ing to device scalable local search algorithms. Currently,

most parameter tuning tools (e.g., [10, 2]) are designed to

improve the expected mean (or median) runtime, however,

unless the algorithms exhibit a non-shifted exponential dis-

tribution, their parallel performance is far from linear and

varies from algorithm to algorithm. Indeed, experimental

results suggest that the best sequential algorithm is not the

best one in massively parallel systems.

The current methodology is limited to satisfiable in-

stances and requires to solve the problem in order to esti-

mate the theoretical distribution. Taking this into account,

further developments should consider the following two di-

rections. First, analyzing the runtime distribution of unsat-

isfiable instances and estimating the maximum number of

satisfiable clauses and the computational time required to

reach that goal. Second, new algorithms shall focus in the

prediction of the parallel performance of a given algorithm

for unseen instances without full sequential execution. To

this end, a promising area of research would be to combine

the statistical model proposed in [23] with the extensive

literature for predicting the runtime of a given sequential

algorithm (see [20]).

The parallel nature of the Graphic Processing Units

(GPUs) offers a potential reduction in the computational

time of parallel local search solvers. The thread hierarchy

in a GPU consists of threads, blocks, and grids. A block

is a batch of threads (all executing the same code) and

blocks are grouped in a grid (blocks are independent). This

hierarchy matches the architecture of the local search pro-

cess by allowing the combination of multi-walk and single-

walk. Taking this into account, independent local search

algorithms can be allocated in different blocks, each block

exploiting parallelism by evaluating neighbors in parallel.

However, the amount of memory available for each block in

the GPU is very limited (i.e., maximum 48 KB per block);

for this reason, it is important to investigate new strategies

to divide the initial formula into independent subproblems

that can be allocated in the device within the memory lim-

itation. Moreover, the GPU also allows the exploration of

a larger neighborhood (e.g., multiple flip exploration) at

each iteration of the local search process with almost no

computational overhead.

5. Conclusions

In this paper we have presented the most important par-

allel local search algorithms for the satisfiability problem.

These algorithms can be divided in two main categories:

parallel portfolios and multiple flips algorithms. Moreover,

we also point out the most important future trends in the

area.

References

[1] D. Achlioptas, C. P. Gomes, H. A. Kautz, and B. Sel-

man. Generating satisfiable problem instances. In

Proceedings of the Seventeenth National Conference on

Artificial Intelligence and Twelfth Conference on In-

novative Applications of Artificial Intelligence, pages

3



The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

256–261, Austin, Texas, USA, July 2000. AAAI Press

/ The MIT Press.

[2] C. Ansótegui, M. Sellmann, and K. Tierney. A Gender-

Based Genetic Algorithm for the Automatic Configu-

ration of Algorithms. In I. P. Gent, editor, 15th In-

ternational Conference on Principles and Practice of

Constraint Programming, volume 5732 of LNCS, pages

142–157, Lisbon, Portugal, Sept 2009. Springer.

[3] A. Arbelaez and P. Codognet. Massivelly Parallel Lo-

cal Search for SAT. In ICTAI’12, pages 57–64, Athens,

Greece, November 2012. IEEE Computer Society.

[4] A. Arbelaez and P. Codognet. From Sequential to Par-

allel Local Search for SAT. In 13th European Confer-

ence on Evolutionary Computation in Combinatorial

Optimisation (EvoCOP’13), 2013. To appear.

[5] A. Arbelaez and Y. Hamadi. Improving Parallel Local

Search for SAT. In C. A. C. Coello, editor, Learning

and Intelligent Optimization, 5th International Con-

ference, LION’11, volume 6683 of LNCS, pages 46–60.

Springer, 2011.

[6] A. Balint and A. Fröhlich. Improving Stochastic Local

Search for SAT with a New Probability Distribution.

In O. Strichman and S. Szeider, editors, SAT’10, vol-

ume 6175 of LNCS, pages 10–15, Edinburgh, UK, July

2010. Springer.

[7] E. M. Clarke, D. Kroening, and F. Lerda. A Tool for

Checking ANSI-C Programs. In TACAS’04, volume

2988 of LNCS, pages 168–176. Springer, March 2004.

[8] H. Hoos and T. Stütze. Stochastic Local Search: Foun-

dations and Applications. Morgan Kaufmann, 2005.

[9] H. H. Hoos. An Adaptive Noise Mechanism for Walk-

SAT. In R. Dechter and R. S. Sutton, editors, 8th Na-

tional Conference on Artificial Intelligence and 11th

Conference on Innovative Applications of Artificial

Intelligence (AAAI’02/IAAI’02), pages 655–660, Ed-

monton, Alberta, Canada, July 2002. AAAI Press /

The MIT Press.

[10] F. Hutter, H. H. Hoos, K. Leyton-Brown, and

T. Stützle. ParamILS: An Automatic Algorithm Con-

figuration Framework. Journal of Artificial Intelligence

Research, 36:267–306, October 2009.

[11] L. Kroc, A. Sabharwal, C. P. Gomes, and B. Selman.

Integrating Systematic and Local Search Paradigms:

A New Strategy for MaxSAT. In C. Boutilier, editor,

IJCAI’09, pages 544–551, Pasadena, California, July

2009.

[12] D. N. Pham and C. Gretton. gNovelty+ (v.2). In

Solver description, SAT competition 2009, 2009.

[13] S. D. Prestwich. Random walk with continuously

smoothed variable weights. In F. Bacchus and

T. Walsh, editors, SAT’05, volume 3569 of LNCS,

pages 203–215, St. Andrews, UK, June 2005. Springer.

[14] A. Roli. Criticality and parallelism in structured sat

instances. In P. V. Hentenryck, editor, CP’02, vol-

ume 2470 of LNCS, pages 714–719, Ithaca, NY, USA,

September 2002. Springer.

[15] A. Roli, M. J. Blesa, and C. Blum. Random walk and

parallelism in local search. In Metaheuristic Interna-

tional Conference (MIC’05), Vienna, Austria, 2005.

[16] B. Selman, H. A. Kautz, and B. Cohen. Noise Strate-

gies for Improving Local Search. In B. Hayes-Roth and

R. E. Korf, editors, 12th National Conference on Artifi-

cial Intelligence (AAAI’94), volume 1, pages 337–343,

Seattle, WA, USA, July 1994. AAAI Press / The MIT

Press.

[17] B. Selman, H. A. Kautz, and D. A. McAllester. Ten

Challenges in Propositional Reasoning and Search. In

IJCAI’97, pages 50–54. Morgan Kaufmann, August

1997.

[18] B. Selman, H. J. Levesque, and D. G. Mitchell. A New

Method for Solving Hard Satisfiability Problems. In

W. R. Swartout, editor, 10th National Conference on

Artificial Intelligence (AAAI’92), pages 440–446, San

Jose, CA, July 1992. AAAI Press / The MIT Press.

[19] O. V. Shylo, T. Middelkoop, and P. M. Pardalos.

Restart strategies in Optimization: Parallel and Serial

Cases. Parallel Computing, 37(1):60–68, 2011.

[20] K. Smith-Miles. Cross-Disciplinary Perspectives on

Meta-Learning for Algorithm Selection. ACM Com-

put. Surv., 41(1), 2008.

[21] A. Strohmaier. Multi-flip networks: Parallelizing gen-

sat. In KI-97: Advances in Artificial Intelligence, 21st

Annual German Conference on Artificial Intelligence,

volume 1303 of LNCS, pages 349–360, September 1997.

[22] J. Thornton, D. N. Pham, S. Bain, and V. F. Jr.

Additive versus Multiplicative Clause Weighting for

SAT. In D. L. McGuinness and G. Ferguson, editors,

AAAI’04/IAAI’04, pages 191–196, San Jose, Califor-

nia, USA, July 2004. AAAI Press / The MIT Press.

[23] C. Truchet, F. Richoux, and P. Codognet. Prediction

of Parallel Speed-ups for Las Vegas Algorithms. Tech-

nical report. Draft, http://arxiv.org/abs/1212.4287.

[24] W. Zhang, Z. Huang, and J. Zhang. Parallel Execu-

tion of Stochastic Search Procedures on Reduced SAT

Instances. In M. Ishizuka and A. Sattar, editors, Pa-

cific Rim International Conferences on Artificial Intel-

ligence (PRICAI), volume 2417 of LNCS, pages 108–

117, Tokyo, Japan, August 2002. Springer.

4


