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This paper outlines an Artificial Life approach to Theory of Mind (ToM), the ability to employ mental models of other 

minds in order to understand or anticipate the behaviour of others. We designed a model in which a population of neural net-

work (NN) agents evolve the ability to predict, on basis of observation of past behaviour, others' future behaviour in novel 

circumstances. As agent behaviour is guided by private mental states, correct prediction of others’ future actions requires that 

the agents learn to recognize others’ mental states from observation of their behaviour. Such learning ability cannot be cap-

tured with conventional learning algorithms, but we find that NNs equipped with neuromodulation mechanisms can be 

evolved to perform favourably on this task. The resulting networks are seen to behave as though they have a primitive form 

of first order ToM.  

 

1. Introduction 

Theory of Mind (ToM) is the ability to employ mental models 

(representations) of other minds, in order to understand or antici-

pate the behaviour of others [Dennett 1987]. The adaptive advan-

tages of ToM are likely to be a driving factor in the evolution of 

recognition of others as well as the self as intentional agents. 

Understanding or anticipating the actions of others typically in-

volves placing oneself in the other's shoes, and reasoning or intu-

iting what one would do in their position. This mental operation 

involves a generalization over perspectives: one has a first-

person perspective on one's own mind but a third-person perspec-

tive on others' minds. Recognition of oneself as an instance of a 

class of agents one observes in the outside world provides a basis 

for a third-person concept of the self, as one intentional agent 

among others. When we think of recursive ToM, the necessity of 

a third-person concept of the self becomes quite obvious. In or-

der for X to think about what Y is thinking about X, X must un-

derstand Y's (third-person) perspective on X. Given that ToM 

involves a third-person concept of the self, it is likely to have 

played a crucial role in the evolution of the understanding of the 

self. At present, this research focuses on non-recursive (i.e. first-

order) ToM, with recursive ToM as a future goal. 

 

2. Research Goal 

Representation is a tough issue, but other minds presents a 

special challenge in that they are (1) invisible (we cannot see the 

minds of others, we can only guess at the existence of other 

minds via observation of behaviour) and (2) themselves capable 

of representing, leading to recursive and reflexive scenarios such 

as mind X representing mind Y that represents mind X. Point (1) 

has implications for learning about other minds: One might learn 

about another's behaviour via direct observation of that behav-

iour, but for learning about another's mind one needs forms of 

learning ability that incorporate inference from externally visible 

behaviour to (invisible) mental states. This sort of learning is 

difficult to capture with traditional AI conceptualizations of 

learning. Indeed, while computational work on ToM exists, the 

mechanisms for representing other minds are usually explicitly 

given [Takano 2006] [Noble 2010]. In this research we instead 

aim to let such mechanisms evolve from scratch, using a mini-

malistic evolutionary neural network model. 

 

3. Model outline 

Agents are implemented as neural networks (NNs). Network 

architecture is evolved using a basic Genetic Algorithm, which 

we will not detail here. Agents interact in pairs. During its life-

time, each agent is part of multiple pairings. In each pair, there is 

a fixed role division: one agent acts at zero-order ToM (L0), and 

one at first-order ToM (L1). Each pair interacts for a set number 

of time-steps. 

 

 
Figure 1. Agent interaction. The L0 agent computes its action 

(R0) from the (shared) environmental state and its (private) 

mental state. The L1 agent computes a prediction (R1) of this 

action. After the prediction is made, R0 is revealed to the L1 

agent as data to drive its learning process. 

 

Our model is not intended to capture any specific social inter-

action scenario in particular. Instead we take a more abstract 

approach, in which the logic that determines the fitness effect of 

performing a given action in a given state is generated randomly 
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for each experiment (i.e. the fitness function is randomly gener-

ated for each run of the model). The idea is that if arbitrary fit-

ness functions can be handled successfully, then the model has 

generality. Thus there is no concrete "task" to solve, there are 

merely environmental states, mental states, actions, and a ran-

domly generated base logic that relates these elements. 

 

Environmental state: bit-string of length Ne. The environ-

mental state is shared between interacting agents (i.e. both agents 

see the same state). The environmental state changes every time-

step, so each pair of agents will always interact under a number 

of environmental states. 

 

Mental state: bit-string of length Nm. Each agent has a private 

mental state, invisible to its interaction partner. Mental states 

remain constant over the course of the interaction of an agent 

pair. 

 

Action: bit-string of length Na. At each time-step, each agent 

outputs an action. 

 

Base logic: generates the optimal action choice for each (envi-

ronmental state, mental state) pair. The base logic abstractly 

represents social scenarios.  

 

Fitness scores for the action choices of the agent performing 

the L0 role are calculated as proximity to the optimal action as 

generated by the base logic. Meanwhile, fitness scores for the 

action choices of the agent performing the L1 role are calculated 

as proximity to the action choice of the L0 agent. As such, the L1 

agent must try to predict the action of the L0 agent, but the action 

choice of the L0 agent depends on the L0 agent's mental state, 

which is invisible to the L1 agent. Herein lies the challenge: in 

order for the L1 agent to be able to predict the L0 agent's future 

moves under future environmental states, the L1 agent must infer 

the L0 agent's mental state from the L0 agent's action choices 

under the current and preceding environmental states. The goal 

of the model is to let this learning ability evolve. Evolution of 

learning ability is made possible using neuromodulation [Soltog-

gio 2008]. This technique has previously been employed to 

evolve spatial representation ability in NNs [Arnold 2012] [Ar-

nold 2013]. We omit detailed explanation here, but the basic idea 

is to introduce a special connection type that lets neurons send 

modulatory signals to one another, and to let these signals control 

connection weight change. This allows for evolution to shape the 

weight update dynamics of the networks by shaping the modula-

tory connectivity. This provides a basis for endogenously con-

trolled behaviour change, i.e. a basis for learning ability. Addi-

tionally, our NN logic allows for recurrent connectivity, so acti-

vation can be retained over time. This can serve as a basis for 

memory mechanisms. After each time-step of an interaction, the 

actual action choice of the L0 agent is revealed to the L1 agent, 

and connection weight updates are performed. By observing both 

the L0 agent's action choice and the environmental state that led 

the L0 agent to choose that action, the L1 agent has the necessary 

information to infer the L0 agent's mental state, and from there 

correctly predict its behaviour under other environmental states. 

This prediction ability is what we aim to let evolve in our agent 

population. 

4. Results 

We have experimented with this model with the Ne, Nm and Na 

parameters all set to 3. Some runs fail, but we found the model 

quite capable of producing agents that can predict other agents' 

L0-action choices under unseen environmental states at far better 

than chance performance, or even near-optimal performance, 

after observing their behaviour under only a subset of environ-

mental states. Thus the agents are successfully learning how their 

interaction partner maps environmental states to actions. In that 

mapping, the partner's mental state plays a central role. As such, 

it seems that by observing their partner's behaviour, the agents 

learn their partner's mental state, suggesting that these agents 

have evolved a primitive form of first-order Theory of Mind. 

Figure 2 shows the evolution process of a representative success-

ful run. 

 

 
Figure 2. Evolution process of an example successful run of 

500000 generations. Note the log scale on the x-axis. L0 fitness 

scores are averages over individuals that have been copied 

from the preceding generation without mutation (i.e. off-

spring of the elite from the previous generation). L1 fitness 

scores are averages over interactions between such individu-

als. Theoretical maximum fitness is 1. The best possible fit-

ness for an individual without learning ability was computed 

to be 0.12 for this run’s base logic. The average L0 and L1 

scores over the final 1000 generations of this run were 0.971 

and 0.974, respectively. 

 

5. Future work 

Future goals in this research are: 1) To investigate where and 

how the partner's mental state is represented in the agents' neural 

structures, and the neural circuitry used to compute L0 responses 

is co-opted to compute the L1 responses (as this would constitute 

a sort of identification with the partner agent). 2) To experiment 

with more complex scenarios for the L1 response (i.e. not mere 

prediction, but acting in anticipation of the L0 agent's action). 3) 

To extend the model to higher (recursive) orders of ToM. 4) 

Once the model works for mental and environmental states of 

sufficient size, we aim to replace the randomly generated base 

logic with simple games or cognitive psychology experiments 

that involve ToM. 
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