The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

2F1-5

Multi-level Scoring Rule Application for Smart Pricing Scheme
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This paper presents an incentive based smart dynamic pricing scheme for consumers facilitating a hierarchical
scoring mechanism. This mechanism is applied between consumer agents (CA) to electricity provider agent (EP) and
EP to Generation Company (GENCO). Based on the Continuous Ranked Probability Score (CRPS), a hierarchical
scoring system is formed among these entities. As CA receives the dynamic day-ahead pricing signal from EP, it will
schedule the household devices to lower priced-period and report the prediction in a form of Gaussian Distribution
to EP. Similarly, EP, reports the aggregated demand prediction to GENCO. Finally, GENCO computes the base
discount after running a cost-optimization problem. GENCO will reward EP with a fraction of discount based on
their prediction accuracy. EP will do the same to CA based on how truthful they were reporting their intentions
on device scheduling. The method is tested on real data provided by Ontario Power Company.

1. Introduction

With the growing needs of environmental sustainability and
continuing changes in electric power deregulation, smart grid be-
comes an inevitable choice for the society. While such grid in-
frastructure in mind, houses started to adopt devices which can be
controlled, maintained, monitored and even scheduled as necessity
calls. Smart house technology used to make all electronic devices
around a house act “smart” or more autonomous. Recently, smart
pricing has attracted much attention as one of the most important
demand-side management (DSM) strategies to encourage users to
consume electricity more wisely and efficiently [1].

On different note, in order to numerically measure up the actual
realization of a probabilistic event which was forecasted ahead,
scoring rule was defined [2]. Moreover, it binds the assessor to
make a careful prediction and hence truthfully elicit his/her pri-
vate preferences. Which is why, scoring rule has been applied
successfully while truthful incentive designing in diverse applica-
tions such as voting rules.

Household devices such as Roomba vacuum cleaners, LG Thinq
smart oven [3] are some commercially available smart devices that
can be controlled and monitored via smart-meter. Using such de-
vices, consumers (actually a consumer agent, refereed as CA here-
after, will be responsible to take such decision in conjunction with
smart-meter) can respond to day-ahead dynamic pricing signal
by effectively and intelligently managing and scheduling devices,
thereby flattening out peak demand and achieving better resource
utilization.

This paper presents a hierarchical scoring rule based payment
mechanism for CA provided by the EP and GENCO in response
to the dynamic day-ahead time dependent pricing. The consumers
will be rewarded a discount on the price to measure up how well
they predict the shifting the devices/loads towards the lower de-
mand (lower price as well) periods. These rewards are again a
fraction of the discount which were provided by GENCO to the
corresponding EP depending on EP’s prediction of required energy
demand. The reward mechanism is based on a strictly proper scor-
ing rule. The scoring rule is chosen to reflect to work with contin-
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uous variable (the normal distribution, as in the proposed method)
and measure up how accurate the prediction could be. The Contin-
uous Ranked Probability Score [4] possess such characteristics.
EP will formulate an optimization problem total energy demand
for its consumers and reports to GENCO. GENCO then run an op-
timization algorithm that will minimize the cost of providing re-
wards to EPs while satisfying EPs energy demand. Therefore, the
reward is actually dependent on both the consumers ’ prediction
and EP’s optimization problem.

As a mechanism deign to incentivize agents (both the CAs
and EPs) for providing private probabilistic information accurately
(truthfully) and to the best of their forecasting ability, scoring rule
is being applied in this model. Interestingly, such scenario coin-
cides with DSM strategy where consumer responses to demand by
shifting their device to lower price periods. Therefore, EP incen-
tivises consumers not only based on their prediction accuracy but
also on the question of whether they shifted such loads to lower
priced periods. Strictly proper scoring rules can be employed by
a mechanism designer to ascertain that agents accurately declare
their privately calculated distributions, reflecting their confidence
in their own forecast.

The details flow of information and task assignments are pointed
in Figure 1. As we can see, GENCO will send the price infor-
mation as a signal to EP. The price signal is typically determined
based on the generation costs of electricity.*! Although this model
does not include the price determination mechanism, we assume
that in dynamic pricing environment, the signal follows the de-
mand. Which is, the price is higher when the demand is higher
and its lower when demand is lower. The price signals are then
conveyed to CAs via EPs. One thing can be noted that, one EP
can provide energy to one or more consumers while one GENCO
can also serve one or more EPs. Since, this model assumes a dy-
namic “day-ahead” pricing signal, CAs receive their prices one
day in advance. Therefore, CAs can schedule their device usages
for the upcoming day into the lower price periods. Lets say, the
demand in each period ¢ is D;. The demand D; in each period
is assumed to be roughly the same each day due to repeated daily

1 In our model, we assume that GENCOs operate on multiple plants
of different types, such as coal, hydro and nuclear. Therefore, pricing
signal could be a function of statistical forecast of historical price and

the amount the EP pay to buy the energy from generation companies.
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Figure 1: Information Flow of the GPC Model

patterns in electricity demands (e.g. period 1 has the same demand
on Monday, Tuesday, etc.).

2. Continuous
(CRPS)

In order to rightfully incentivise the consumers on their predic-

Ranked Probability Score

tion of device shifting; the continuous ranked probability score
(CRPS) is applied [2]. CRPS is a strictly proper scoring rule that is
used for continuous variable since, the traditional forms of proper
and strictly proper scoring rules are usually not work with contin-
uous variables. In the proposed method, Gaussian Distribution is
used to model the consumers device shifting prediction and associ-
ated confidence. The usage of CRPS is investigated before in dis-
tributed power system operation to rightfully score the distributed
energy resource(s). CRPS is able to measure the closeness of the
prediction. Since, every device has different priority level of us-
age, we impose some weights over devices and calculate the actual
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weighted average of cumulative error as presented in Eq. (1)
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where P and PJ describe the prices of energy when the devices

are operated at hours a (actual) and p (predicted). DV, is the set
of devices for CA, u. Lets assume, each CA, u reports its relative
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prediction error in a form of uncertainty over it, represented by
Gaussian Distribution Function N' (1 = 0, 02). The reward score
is therefore, generated by CRPS for that particular u is defined as
Eq. 2)

CRPS(N (1= 0,02),6.)
2 (5) —2 (o (3) )]

where the probability density function and cumulative distribution

B @

function for Gaussian Distribution Function are denoted as ¢ and

®, respectively. The notation CRPS(N (1 = 0,072),5,) can be
simplified using CRPS(02, 8y).

2.1 Truthfulness of Agents: CA and EP
However, predicting correctly about the device shifting sched-
ule will not necessarily incentivize the CA to truthfully report its
intentions regarding device shifting. For instance, a CA can mis-
report about shifting period of a particular device (or group of de-
vices) to a higher priced period while in actual it shifts the device
in a lower priced time. Therefore, although the CA will lose the
some discount by incorrect prediction, it will gain benefit by shift-
ing device(s) in lower priced period. In order to incorporate such
scenario and strictly incentive the CA for reporting its true pre-
diction, the scoring rule needs to be revised. Assuming the price
curve follows the demand curve, the scoring rule (SR) is defined
as following
) CRPS if(Pi—P})>0Vde DV,
SR = { 0 Otherwise ®)
This above function ensures that any misreporting by CA will gen-
erate a 0 score. For example, consider a case where a CA wants to
use a device at period 1 and misreports that s/he will use it at period
2 (which is a higher priced period than period 1). Therefore, al-
though s/he gets a less score for misreporting, it would appear that
s/he will be compensated by lower price in period 1. But according
to Eq. (3), it will get O discount. Hence, any CA who misreports
of its true intention about shifting any device, will get no discount.
CRPS is a strictly proper scoring rule that also ensures the truthful-
ness of the reporting [2]. The proposed scoring rule (Eq.(3)) also
possesses the strictness property of CRPS since its internal mech-
anism also based on CRPS. Therefore, the proposed scoring rule
is also truthful. Figure 3 shows the realization of scoring factors
for different errors and confidence level. As pointed out before,
the CAs will report their predictions of device usage in the mean
of relative error (Eq. (1)) aggregated over all devices. Since, the
CAs are aware of the scoring system used by the EPs, they have
the liberty to choose associated confidence level (i.e. the sigma;
o). From the graph presented in Figure 3, it is important to notice
that,

a. when a CA is highly confident about its prediction (i.e. o, =
0); highest score is rewarded only when the realized absolute
error is zero

b. when the realized error is relatively higher, the CA will be
benefitted to report lower confidence (i.e. higher values of
o)

c. most importantly, CAs do not know the exact shape of the
function when it declares the prediction, since the actual er-
ror only realized when the event occur

However, the CA has ideas how it will be scored. For instance, if
it is likely to make a larger error, it implicitly chooses the func-
tion that will penalize it lower by reporting larger . On the other
hand, if it is confident of its prediction accuracy, it will report a
higher o. By this way, we ensure CAs to report truthfully about
their prediction intentions. Moreover, our model assume no collu-
sion between the participating agent devices (CA and EP). As we
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Figure 2: CRPS scoring mechanism for different errors

mentioned (and will show in later section), the prediction that EP
makes regarding the aggregated energy requirement for its CAs,
does not involve any imposition or disturbance towards CAs’ de-
vice prediction. Rather, EP uses CAs’ intentions as a base to report
its prediction. Therefore, EP also exhibits the truthfulness prop-
erty. So, the agent devices (CA and EP) used in this model are
truthful and non-collusive.

2.2 GENCO and EP: Cost Optimization

Based on the device shifting prediction of CAs, EP will try to
produce a potential reward (pr) which is actually based on the
shifting probability of a particular device by the amount of shift-
ing. In ideal case, where CA’s device commitment prediction co-
incides with the actual one, there will be no shifting. Taking such
scenario in mind, the shifting probability (S P) function is chosen
to be concave and assumed to be increasing in pr and decreasing
in shifting time ¢. The total cost of offering potential reward by
summing up the demand shifted into period ¢ is calculated as,

N U
Xep = Zpr’b ZZ Z ejSPj(pTi7 ‘k - 7’|)
=1

u=1 k#i JEDV}

“)

EPS is the set of EP registered to buy energy from that GENCO.
The cost of meeting consumers demand at period i, therefore, is

Xgenco = Z Cim [Y - sz]+ (5)
m=1,2
The final optimization problem is defined as
; XE X enco
7’;3” [Xep + X ] ©)
st. pr>0
The discount EP will receive for their truthful prediction is
. (XN pri) * CRPS(0%p,05p)
Discountgp = = @)
> ppepps CRPS(0%p,0EP)
The scoring factor for u at period ¢ is therefore, defined as
sfl = revenue(discountgp) * SR(0y, 0u) X prs ®)
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Figure 3: Piecewise linear cost model for base-, intermediate- and
peak- load demand

3. Agent Simulation

In this section, some data analysis and preliminary simulation
results are presented in order to verify the feasibility of the hierar-
chical scoring rule based pricing mechanism as well as to demon-
strate the ability to reduce GENCO’s cost of electric generation
and flatten electric usage over some periods. For scalability we
assume 1 GENCO entity which supplies energy to 10 electricity
providers (EP). Which in turn serves 100 consumers each. How-
ever, the initial simulation is limited to 1-GENCO, 1-EP and 1-
consumer model to elaborate the models’ validity. The real param-
eters are based on Ontario Independent Electric Operator ( [5]).
The base-load plant in Ontario is hydroelectric; (assume 60% are
base-load plants). The production capacity of each plant is taken
as constant across different periods of a day for the purposes of
simulation. The intermediate-load consists of coal (operating at
20% efficiency, as is consistent with IESO) and the remaining hy-
droelectric plants. Finally, the peak plants are gas turbines, which
are the most expensive to operate. The slopes of the cost func-
tions for base-, intermediate- and peak-load plants (refer to Figure
3) are taken from the production estimates reported in literature.
The marginal costs of moving from intermediate- to peak load and
base- to intermediate-load plants are calculated to be $62.46/MWh
and $18.54/MWh respectively. Since its a GW based power sys-
tem, the system data is effectively scaled down to provide simpler
simulation conditions. The prices are also equivalently scaled into
kWh level.
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Figure 4: Hourly active devices for a single consumer in a 24-hours
period after running smart pricing scheme

Assuming the electricity usage of a single consumer, Figure 4
presents the periodically expected device scheduling after apply-
ing the smart pricing scheme. While the quantitative results of
these simulations will vary from market to market, the qualitative
results suggest that smart pricing can indeed help GENCOs and
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Figure 5: Discount provided to a single consumer for 96 hours.
Total energy consumed 142.1 kWh.

EPs to even out consumption over the day and reduce the energy
requirements from peak-load plants. Scrutinizing the cyclic elec-
tricity consumption pattern, it can be shown that for four consecu-
tive days of energy consumption of 1 consumer reported is 142.1
kWh. However, before using the reward based pricing scheme, the
total consumption recorded for a single consumer was 170.35 kWh
(based on the single household consumption determined according
to the data presented in [5]). Therefore, for a single consumer,
the proposed scoring rule based reward scheme can reduce energy
consumption down to 20%.

Figure 5 shows the rewards corresponding to the same energy
consumption pattern as discussed in previous paragraph. It is noted
that the rewards (discounts) are roughly cyclical, as might be ex-
pected. If we check the pattern, it is clearly seen that, in case
of peak demand hour, the reward is minimum which states the
fact that, it becomes difficult to make an accurate prediction in
peak hour. Figure 6 depicts the effect of smart pricing scheme on
pricing. We can see that, a CA can effectively reduce payment
towards EP if it truthfully reports about its device scheduling on
the basis of the day-ahead price signal and shifts them in lower
priced period. To provide the scalability of the proposed method,
Figure 7 is presented. It shows effect aggregated over 1000 con-
sumers (1-GENCO, 10-EPs and 1000-consumers). It is noted that
the peak-to-average (P2A) ratio of the consumption pattern before
using scoring rule based smart pricing is 2.55 while it comes down
to 1.91 when using the proposed pricing scheme. Qualitatively
speaking, the P2A ratio is down by approximately 25%. Therefore,
the proposed scheme works better when the number of consumers
is higher. So, it can be said the method is practically viable and
scalable. Moreover, such measure reflects the fact that the strictly
proper scoring rule based reward mechanism is able to flatten the
load demand.

4. Conclusion

This paper introduces a new smart pricing scheme considering
a model consists of generators, provider and consumers. The for-
mulations are carried by devising a truthful mechanism for both
consumer and provider entities where they will report their true
intentions regarding device scheduling and energy demand, re-
spectively. The scoring system (facilitating Continuous Ranked
Probability Score) is designed such a way that, it will force con-
sumer agents to report their true beliefs towards providers. On
the other hand, provider agents themselves are incentivised to re-
port the energy demand to generation companies (GENCO) truth-
fully to get a discount over price. The conducted simulation results
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Figure 6: The price curve Vs. the payment which occurred before
and after applying smart pricing scheme. This price signal is taken
from 1st March, 2010.
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Figure 7: Energy usage before and after using of scoring rule based
smart pricing; aggregated over 1000 consumers

show that, the proposed smart pricing scheme is able to reduce the
total energy consumption as well as consumers payment towards
providers. Therefore, consumers are benefitted since they paid less
than the actual price and we have a cleaner environment with re-
duced energy production. As a future study, we will try to model
the device sensitiveness towards scheduling and apply such mech-
anism for higher scaled smart power system.
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