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人の運動を表現する基礎的な特徴量は、多くの場合、課題固有的にアドホックに設定され、その妥当性に

は議論の余地がある。本研究では、物理的な特徴量(速度、間接角など)に代わり、その高次空間に埋め込

まれた力学系の位相構造を基礎として、運動を記述する手法を提案する。本手法をサンバ演奏時の運動デ

ータに適用する事で、演奏者、演奏速度などによらないサンバ固有の不変構造を抽出できる事を示した。 

 

1. Introduction 

Recognition of motion is vitally important to any animal. 

Detection of another animal, whether predator or prey, or a 

conspecific, and subsequent detailed identification of the other 

and how it may behave is essential to taking any emergent 

actions (Johnson, Bolhuis, & Horn, 1985). Not surprisingly, our 

visual system is highly specialized to recognize others’ actions. 

How do we recognize bodily movements? 

The past experimental literature has explored capacity 

of motion perception using point-light displays 

(Johansson, 1973) in which the point-lights attached in 

major joints are only visible in the dark background. 

The available information is point-wise kinematic 

motion in multiple body parts. Despite of the limited 

information, people can recognize identity (Troje, 

Westhoff, & Lavrov, 2005), gender (Kozlowski & 

Cutting, 1977; Troje, 2002), emotions (Pollick et al., 

2001; Atkinson; 2009; Hobson & Lee, 1999), dynamics 

such as the weight of a lifted object (Bingham, 1987) of 

actions from point-light displays. Accumulating 

empirical studies on action perception have suggested 

that velocity and its higher order derivatives in single or 

multiple body parts characterize actions: duration of 

action (Pollick et al., 2001), velocity (DeMeijer, 1989), 

acceleration (force or the second order time derivatives) 

(Chang & Troje, 2008; 2009), jerk or the third order 

time derivatives (Cook, Saygin, Swain, & Blakemore, 

2009), and pairwise counter-phase oscillation (Chang & 

Troje, 2008; 2009). Although conventional 

biomechanical quantities mentioned above have been 

traditionally promoted as the likely variables of motor 

control and action perception, there are doubts about 

their appropriateness for the task (Turvey, 1998).  

Therefore, instead of such biomechanical quantities, we 

hypothesize that an appropriate set of representations 

for action recognition is “dynamical invariances” under 

smooth transformation. This hypothesis views motor 

control underlying human movements as a set of 

dynamical systems, that is, a sequence of interactions 

between elements involved in controlling movements 

such as body joints, muscles, neural systems, etc. The 

properties retained in dynamical systems for long term 

can be captured with invariant measures such as 

attractor dimension or Lyapnov exponent (Kantz & 

Schreiber, 1997). 

We define a higher dimensional space, i.e., phase space, 

within which all possible combinations between 

elements involved in controlling movements can be 

found. An action is then defined as a trajectory on the 

space. Trajectories can be projected onto lower 

dimensional spaces, e.g., actual movements observable 

from outside. In our study, we collect motion data to 

reconstruct the dynamical systems by embedding the 

time series in a higher dimensional space. For graphical 

examples, Figure 1 illustrates attractors, or the state 

space which the system may take in the three theoretical 

dynamical systems, the Hennon map, Rossler system, 

and Lorenz system (Figure 1 (a-1), (a-2), (a-3)). A 

univariate time series (as imperfect observation of the 

system) is shown in Figure 1 (b) for each of these 

systems. Since the original systems live in two or more 

dimensions, these univariate time series do not have full 

information due to missing dimensions. Thus, we need 

to “reconstruct” the phase space instead of studying the 

degenerated patterns (Takens, 1981). By taking the time 

delay vector (e.g., {x(t), x(t+)}), the topological nature 

of the phase space is reconstructed (Figure 1c). In 

Figure 1 (c-1)-(c-3), the time-delay embedding (a map 

from low to high dimensional space) successfully 

recovers similar topological structure shown in Figure 1 

(a-1)-(a-3) only from the degenerated data Figure 1 (b-

1)-(b-3). Although the original phase space is unknown 

for empirical bodily movements, we expect the intrinsic 

topological nature can be reconstructed in the same way 

as the theoretical dynamical systems (Figure 1 (b-4) and 

(c-4)). See Kantz and Schreiber (1997) for a detailed 

description of these procedures for nonlinear time series 

analysis. 

To study dynamical invariances, we investigated 

topological similarities of motor coordination. The 
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rationale for the approach is found in observations such 

that one can mimic other’s behaviors no matter how 

different their individual appearances. Topology 

abstracts over physical particulars such as distance, 

speed, etc., to extract some dynamical invariances 

independent of these physical properties. Specifically, 

we examined the dynamical properties of rhythmic 

movements for two main reasons. First, rhythmic 

movements are not just a period but with fluctuating 

accents, and this is expected to show complexity to 

some extent neither too simple nor too complex. Second, 

actions which an actor can maintain continuously and 

produce a substantial amount of datasets are necessary 

for characterization of dynamical invariances. 

 Figure 1: Phase space of (a-1) the Hennon map, (a-2) 

the Rossler system, (a-3) Lorenz System, and (a-4) the 

body model and attached markers (filled circles: 

analyzed, open circles: attached but not reported in this 

study). (b1-3) A univariate time series from the original 

phase space in (a1-3) (b-4) An x-axis phase of the 

Shaker 1 in the expert player in the 60-bpm trial (blue 

circles) with the estimated noise-reduced time series 

(black dots). (c1-4) The reconstructed phase space from 

the low dimensional observed time series in (b1-4). 

2. Characterizing Complex Rhythmical Actions 

The data was originally obtained in order to analyze the 

levels of expertise in the samba music plays (Yamamoto, 

Ishikawa, & Fujinami, 2006). The dataset consists of 

five players, and each player performed basic samba 

shaking actions in five different tempos (60, 75, 90, 105, 

and 120 beats per minute, and each trial lasted 97.4 

seconds on average) by being cued with a metronome. 

While playing, three dimensional motions of 18 

markers, attached on body parts and musical 

instruments, were recorded at 86.1Hz of sampling rate 

(Figure 1a-4). As well as the original study, here we aim 

to find the relationship between dynamical properties 

among bodily actions. For simplicity, we limited 

ourselves to analyze a subset of the original datasets,  

3190 samples (74.1 seconds long) of four markers 

attached on right wrist, right elbow, and two sides of the 

musical instrument (shaker), having the right shoulder 

asreference point (Figure 1a-4). These  were  the  

essential  parts  of  the  samba  actions  making sounds 

directly, and we expected that dynamic coordination 

among them would be crucial to characterize the 

dynamical properties of the samba.  

2.1 Preprocess and phase space reconstruction 

In the analysis, after down-sampling the original data to 

46.05 Hz, the first 250 samples (5.81 second long from 

the beginning of the recording) was excluded as initial 

setup of the actions, and 3250 samples (75.5 second 

long) of velocities were analyzed for each subject. In 

order to reduce measurement noise, for each movement 

of the markers, the local linear projective method was 

performed after phase space reconstruction of each time 

series on the 31 dimensional time delay space with 46 

msec (i.e., { t, t + ∆t, t + 2∆t, . . . , t + 30∆t } where ∆t = 

46 msec) (Takens, 1981). This technique is a 

nonparametric and unsupervised method which, in 

principle, reduces observation noise independent of the 

time series intrinsically generated from a nonlinear 

dynamical system. Figure 1 (b-4) shows the original 

data (open circles) and its noise-reduced data (filled 

circles) after applying the local linear projective method. 

Due to digitalization in the motion capture system, the 

original data only takes certain discrete values which 

may be potential source of observational noise in the 

measurement. As the result of the noise reduction, we 

obtained the 31 dimensional phase space of 3220 points 

for each coordinate of three dimensional positions of 

each marker movement in each subject and trial. An 

example of the reconstructed phase space is shown in 

Figure 1 (c-4).  

2.2 Results 

In order to see the rhythmic properties as phase shifts in 

repeating actions, we analyzed the temporal profiles of 

the velocities in right arm and wrist. Figure 2 shows the 

histogram of phase differences between body parts with 

the right shoulder as the reference point. Since the right 

elbow and wrist are the major body parts playing the 

shaker, their temporal structure was expected to reflect 

the rhythmic charateristics. However, not as expected, 

the five musicians showed quite different distributions 

in terms of phase shifts among body parts, even for the 

right wrist and elbow moved to play the shakers to the 

same tempo. The peaks found for the elbow and wrist 

are sharp for the musician A and D, compared with 

those found in the other musician. As for A, the peaks 

of the elbow and wrist come to the same phase, but the 

peak is less visible for the wrist. As for D, the peaks of 

the elbow and wrist come later than that of the shoulder. 

For the other musicians, no obvious feature is found. 

The frequency uniformly varying over the phase angle 

shows large fluctuations in arm movements for each 

musician. The histograms revealed both within-

musician fluctuations and individual differences rather 

than similarity among actions. The results suggest that 

charaterization of the “same” action (i.e., playing to the 
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samba rhythm) on the levels of physical properties may 

lead quite different patterns across subjects. Needless to 

say, changing physical properties such as tempos also 

directly changes phase differences. The level of 

physical properties is not sufficient for characterizing 

actions even if the major parameter of the actions (i.e., 

tempo) is well controlled.  

Next, we analyzed the properties of actions by looking 

into the dynamical systems underneath body 

movements. A basic technique to characterize 

dynamical properties from an empirical time series is 

phase space reconstruction. A phase space reconstructed 

by time-delay embedding is visualied as a three 

dimensional subspace projection (Figure 1c-4). The 

phase space is originally a set of velocity vectors of the 

four markers including two sides of the shakers, right 

wrist and elbow. The trajectory on the reconstructed 

phase space shows an attractor or the state space the 

system may take. The phase space is 124 dimensional 

space consisting of 31 time-delay copies of the four 

dimensional time series. First we analyzed the 

dimensionality of the attractors as one of invariance for 

the dynamical system. It is formally measured by 

correlation dimensions (Kantz & Schreiber, 1997), and 

we found the correlation dimensions varying from 1.8 

to 2.4 across five musicians and five conditions. These 

results suggested the state space of the samba rhythm is 

rather restricted on a low dimensional space.  

Since the dimensions of the attractors are lower than 

three, it  

 

Figure 2: The distribution of phase shift of right elbow 

(gray) and right wrist (white). 

Figure 3: The reconstructed phase space embedding in 

three dimensional time delay space in Musician A-E 

playing at tempo 60, 75, 90, 105, and 120 BPM. The 

velocity of the trajectory on the three dimensional space 

is shown as RGB color code for its visibility. 

 

allows us to visualize them on the three dimensional 

space without losing much information. Figure 3 shows 

the attractors estimated for all the five musicans on the 

five conditions. Visual inspection of the samba 

attractors grasps the gist of commonalities among the 

attractors. Consistently across most of the attractors, 

they share a similar shape of trajectories – a twisted 

double circle (which may appear different due to a 

specific visual angle of each attractor). These similar 

“shapes” of trajectories indicate that the topological 

nature of the attractors is similar. The result -- higher 

similarity between topolgoical properties of the state 

space -- is quite surprising with consideration to the 

individual differences on the physical level 

charateristics (Figure 2). The results suggest that the 

topological properties of the attractors were quite 

similar across different musicians and tempos, while 

their physical realizations of the actions were different 

person to person. 

3. Discussion 

One of challenges to the theory of action recognition is 

formalizing the possible attributes of characteristic 

actions. In the present study, we hypothesize that an 

intrinsic topological nature of actions as dynamical 

systems characterizes a similarity between actions. This 

is meant to describe actions on the basis of invariances 

under nonlinear transformations, rather than the specific 

features (coordinate systems) the actions have. In other 

words, this is to abstract the actions from their physical 

properties. In order to test the hypothesis, we 

investigated the samba playing action, which is 

repetitive rhythmic movement. The samba rhythm 

fluctuates within a certain range, showing a complex 

accent pattern, even if an auditory cue is given to keep 

the tempo constant (Figure 2). Therefore, no common 

property was found in movements across musicians in 

physical movements of the right arm.  

Subsequently, we analyzed the same data from a 

perspective of actions as dynamical systems. In the 

analysis, we define a higher dimensional space in which 

action is mapped as a trajectory. We analyzed time-

delay vectors, which embed the time series of 

movements, i.e., lower dimensional data, into higher 

dimensional space.  

The analyses revealed topological similarities in the 

reconstructed phase space among the musicians and 

among the different playing conditions. The analyses 

using the symbolic dynamics quantified the similarities 

in terms of their topological structures. In sum, these 

results supported our hypothesis that human actions can 
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be characterized on the basis of invariances as 

dynamical systems. This invariant nature of the 

dynamical property can serve as a possible basis for our 

perception of actions, and offers an explanation of why 

we perceive them as “the same actions.” Interestingly, 

the patterns revealed in the current analysis (Figure 3) 

are not just abstract-level depiction, but they also 

correspond with the introspective view of the samba 

rhythm (Figure 4: obtained from the most experienced 

musician A in the post-experiment interview). His 

drawing represents a general periodic motion with 

accents at a particular part of the trajectory. The 

geometric shape of the trajectory closely corresponds 

with the reconstructed phase space (Figure 3). 

The present study proposes the dynamical perspective 

of actions in which it is essential to characterize 

topological similarities of actions as attractors. It is 

viewed as a paradigm shift from cognition as inverse 

computation for an ill-posed problem to the 

computation of invariances under smooth 

transformations. 

Figure 4: A drawing by the expert in his introspective 

explanation of the samba rhythm. 

Acknowledgments 
This study was supported by Artificial Intelligence 

Research Promotion Foundation, a grant of the 

NeuroCreative Lab (NPO), and Grant-in-Aid for 

Scientific Research B KAKENHI No. 23300099 and 

Grant-in-Aid for Challenging Exploratory Research No. 

25560297. 

References 

Atkinson, A. P. (2009). Impaired recognition of emotions from 

body movements is associated with elevated motion coherence 

thresholds in autism spectrum disorders. Neuropsychologia, 47, 

3023–3029. 

Bingham, G. P. (1987). Kinematic form and scaling: 

Further investigations on the visual perception of 

lifted weight. Journal of Experimental Psychology: 

Human Perception and Performance, 13, 2, 155-177, 

Blake, R. & Shiffrar, M., (2007). Perception of 

Human Motion. Annual Review of Psychology, 58, 

47–73. 

Chang, D. H. F., & Troje, N. F. (2008). Perception of animacy 

and direction from local biological motion signals. Journal of 

Vision, 8, (5):3, 1–10. 

Chang, D. H. F., & Troje, N. F. (2009). Acceleration carries 

the local inversion effect in biological motion perception. 

Journal of Vision, 9, (1):19, 1–17 

Cook, J., Saygin, A. P., Swain, R., & Blakemore, S-H., 

(2009). Reduced sensitivity to minimum-jerk 

biological motion in autism spectrum conditions. 

Neuropsychologia, 47, 14, 3275-3278. 

DeMeijer, M, (1989). The contribution of general 

features of body movement to the attribution of 

emotions. Journal of Nonverbal Behavior, 13, 4, 247-

268. 

Giese, M. A. & Poggio, T. (2003). Neural 

Mechanisms for the recognition of biological 

movements, Nature Reviews Neuroscience, 4, 179-

192. 

Hobson, R. P. & Lee, A. (1999). Imitation and 

Identification in Autism, Journal of Child 
Psychological Psychiatry, 40, 4, 649-659. 

Hubert, B., Wicker, B., Moore, D. G., Monfardini, E., 

Duverger, H., Fonse´ca, D. Da, Deruelle, C. (2006). 

Recognition of Emotional and Non-emotional 

Biological Motion in Individuals with Autistic 

Spectrum Disorders. Journal of Autism 
Developmental Disorders, 37, 7, 1386-1392. 

Johhanson, G. (1973). Visual perception of biological 

motion and a model for its analysis. Perception & 
Psychophysics, 14, 2, 201-211. 

Johnson,  M.  H.,  Bolhuis,  J.  J.,  &  Horn,  G.  (1985). 

Interaction between acquired preferences and developing  

predispositions  during  imprinting.  Animal Behaviour, 33, 

1000–1006. 

Kantz, H., & Schreiber, T.   (1997).   Nonlinear time series 

analysis. Cambridge, UK: Cambridge University Press. 

Lange, J., & Lappe, M. (2006). A model of biological 

motion perception from configural form cues. Journal 

of Neuroscience, 26, 11, 2894–2906. 

Moore, Hobson, & Lee (1997). Components of person 

perception: An investigation with autistic, non-autistic 

retarded and typically developing children and 

adolescents., British Journal of Developmental 
Psychology, 15, 401-423. 

Pollick, F. E., Paterson, H. M., Bruderlin, A., Sanford, A. J., 

(2001). Perceiving affect from arm movement. Cognition, 82,  

B51–B61. 

Pollick, F. E., Lestou, V., Ryu J. Cho, S-B. (2002) 

Estimating the efficiency of recognizing gender and 

affect from biological motion., Vision Research, 42, 

2345-2355. 

Pollick, F. E., Paterson, H., Bruderlin, A. & Sanford, 

A. J. (2001) Perceiving affect from arm movement. 

Cognition, 82, B51-B61. 



The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013 

- 5 - 

Pollick F. E., Paterson, E. (2008). Movement style, 

Movement features, and the recognition of affect from 

human motion, In Shipley, T. F. & Zacks, J. M., 

Understanding Events from Perception to Action, 

New York: Oxford University Press, 286-307. 
Takens, F. (1981). Detecting strange attractors in turbulence., 

In D. A. Rand and L.-S. Young. Dynamical Systems and 

Turbulence, Lecture Notes in Mathematics, vol. 898. Springer-

Verlag. pp. 366–381. 

Troje, N. F. (2002). Decomposing biological motion: A 

framework for analysis and synthesis of human gait patterns. 

Journal of Vision, 2, 371-387. 

Troje,  N. F.  (2008). Biological  motion  perception.  In 

Basbaum, A.  et  al.  (Eds.), The senses: A comprehensive 

reference (pp. 231–238). Oxford: Elsevier. 

Troje, N. F., Westhoff, C., & Lavrov, M. (2005). 

Person identification from biological motion: effects 

of structural and kinematic cues. Perception & 
Psychophysics, 67 (4), 667-675. 

Turvey, M. T. (1998). Dynamics of effortful touch and 

interlimb coordination. Journal of Biomechanics, 

31(10), 873-882. 

Yamamoto, Y., Ishikawa, K., & Fujinami, T.   (2006).   

Developmental stages of musical skill of samba.  

Journal of biomechanics, 39, S555.  

 

 


