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Numerous methods have been proposed for privacy-preserving data mining (PPDM). We considered a general
problem in this issue – multi-party secure computation of functions on secure summations of data spreading around
multiple parties. Most of the related works are based on an assumption that semi-honest is and collusion is not
present. In other words, some parties may collude and share their record to deduce the private information of
other parties. In order to solve above collusion problem, a secure computation method that entails a high level of
collusion-resistance have been proposed. Unfortunately, the private inputs of some parties may be inferred because
unnecessary information is disclosed in the process of this method. In this paper, we will improve this method,
so that the final result is directly computed without any intermediate information being revealed. Moreover, this
method can be used to securely compute almost any kind of function on secure summations.

1. Introduction

In recent years, increased concern over personal informa-

tion and privacy protection has led to the development of a

number of techniques such as randomization and homomor-

phic encryption. Such techniques have been suggested to

ensure that data mining can be performed while maintain-

ing the preservation of private information protection. We

consider privacy-preserving data mining in which m parties

collaborate to compute some function of their input, and

no party in the system will learn any additional informa-

tion separate from the functions and the parties’ own input.

Large numbers of conclusions in privacy-preserving data

mining have been obtained by researchers, most of which

are based on an assumption that each party is semi-honest.

In particular, a party is deemed semi-honest when the party

follows the protocol properly with the exception that it

keeps a record of all its intermediate computation results

and then tries to deduce further information in addition to

the protocol result. Moreover, researchers also assume that

every party does not collude or share its record with any

other party.

Consider an example in whichm parties collaborate to se-

curely compute the average of all data on them. Each party

has the inputs is and in, the summation of all data on that

party and the number of those data respectively. The goal

is to compute r = (1s+ 2s+ · · ·+ms)/(1n+ 2n+ · · ·+mn),

the overall average of the data in all parties. A straight-

forward method is securely computing the numerator s =
1s+2s+· · ·+ms and the denominator n = 1n+2n+· · ·+mn

respectively, and then computing the average r = s
n
. Un-

fortunately, since everyone knows the values of s and n, if

party 2, 3, · · · ,m collude, they can infer 1s and 1n easily.

That means the inputs of party 1 are revealed to others.

In order to prevent such a thing from happening, a pro-

tocol against collusions is necessary for each party. Here,

the collusion problem is that a subset of the participants, a
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coalition, might get together after the execution of the pro-

tocol and attempt to deduce additional information from

non-coalition parties.

The computation of the function over secure summations

of data spreading around multiparty is a general problem in

distributed computation and privacy-preserving data min-

ing. We have proposed a method [7] enhancing the security

against party collusion, i.e. satisfying full-privacy. It is also

an efficient one with a running time of O(m) in the case

of full-privacy. However, since intermediate messages are

exchanged between parties throughout this method, these

messages may be used to deduce private information of

other parties. In this paper, we will improve this method

so that no private information is disclosed.

2. Related Works

There have been many proposals in the area of privacy-

preserving data mining recently. Following is an overview

of the most pertinent proposals.

In 2005, Jha et al. [3] proposed an algorithm to securely

compute the weighted average problem (WAP) for the 2-

party privacy-preserving K-means algorithm. Mert Ozarar

et al. [4] extended WAP to multi-party case. In Mert’s

method, if some parties collude, they can easily deduce the

private information of other parties. Vaidya et al. [6] pro-

posed another solution of computation of the ratio of (two)

summations of data spreading around m parties to solve

the problem of privacy-preserving naive Bayes. The final

result can be securely computed without revealing any pri-

vate information if there is no collusion. Unfortunately, if

some of parties collude, privacy may be revealed.

3. Preliminaries

Homomorphic encryption is widely used in PPDM. Given

a key pair (sk, pk) and a message m in ZN∗ , c = Epk(m)

denotes an encryption of the plaintext m, and d = Dsk(c)

denotes the decryption of the cryptograph c. In particu-

lar, we call such an encryption system a homomorphic en-
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Table 1: Secure Product of Summation Protocol (SPoS).

01 Input: Party i have private inputs ix, iz.

02 Output: Party i privately obtains number ip.

03 begin

04 for each j ∈ 1..m (j ̸= i)

05 Running random share protocol with Party j,

06 Party i generates random numbers iδj and iϵj ,

07 Party j generates random numbers jδi and
jϵi,

08 s.t. iδj +
jϵi ≡ ixjz and jδi +

iϵj ≡ jxiz.

09 end for

10 ip = ixiz + iδ1 + · · ·+ iδi−1 +
iδi+1 + · · ·+ iδm

11 +iϵ1 + · · ·+ iϵi−1 +
iϵi+1 + · · ·+ iϵm.

12 end

cryption, if there are two operations + and · satisfying the

condition for any m1 and m2:

Epk(m1 +m2) ≡ Epk(m1) · Epk(m2). (1)

The following equation is straightforward.

Epk(mk) ≡ Epk(m)k. (2)

There are several classical homomorphic cryptosystems.

In this paper, we employ an additively homomorphic cryp-

tosystem - the Paillier [5].

Goethals et al. [2] proposed a two-party random share

protocol using homomorphic encryption. Two parties, Al-

ice and Bob, each respectively having an n-dimensional vec-

tor, x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn), share the
dot product x · y =

∑n
i=1 xiyi. More specifically, Alice and

Bob securely generate random numbers sa and sb, respec-

tively, such that sa + sb = x · y. This protocol is secure

because both parties only obtain a random number, sa and

sb, respectively. Alice knows nothing about y if she does

not know sb, and so does Bob.

4. Collusion-Resistant Algorithms

We notice that all the problems in section 2. are the

computation of secure ratio of summations [3, 4, 6], while

those proposed methods do not deal with collusion problem.

[7] proposed a collusion-resistant protocol for this problem.

This protocol satisfied full-private ((m− 1)-private), where

m is the number of parties.

4.1 Secure Product of Summations Protocol
A Secure Product of Summation Protocol [7] (Table 1) is

proposed to privately compute the product of secure sum-

mations. From Table 1, we have the following equation.

p = 1p+ 2p+ · · ·+ mp =

(
m∑
i=1

ix

)(
m∑
i=1

iz

)
. (3)

Therefore, if each party publishes its result ip, every one

can computes p in (3) by summing up all ips.

Table 2: Secure Ratio of Summation Protocol (SRoS).

01 Input: Party i have ix, iy.

02 Output: All parties obtain r =

∑m
i=1

ix∑m
i=1

iy
.

03 begin

04 Generate a real number randomly iz.

06 Running SPoS protocol with other parties

07 to generate and ip and ip′, s.t.

09 p =
m∑
i=1

ip =

(
m∑
i=1

ix

)(
m∑
i=1

iz

)
.

09 p′ =

m∑
i=1

ip′ =

(
m∑
i=1

iy

)(
m∑
i=1

iz

)
.

09 All parties compute r =
p

p′
=

∑m
i=1

ix∑m
i=1

iy
.

10 end

4.2 Secure Ratios of Summations Protocol
Using SPoS protocol, [7] derived a Secure Ratios of Sum-

mation Protocol (SRoS), as Table 2, to compute the secure

ratios of summations of data spreading around m parties.

4.3 Performance
The privacy of random share protocol has been guaran-

teed in [2]. A measure, t-private, is introduced to evaluate

the level of security in term of collusion-resistance.

Definition 1 (t-Private). Let f : ({0, 1}∗)m → {0, 1}∗ de-

note an m-input, single-output function, and let Π be an

m-party protocol for computing f . We denote the party in-

put sequence by x = (x1, x2, · · · , xm). For the subset of [m],

I = {i1, i2, · · · , it}, we let V IEWΠ
I denote the joint proto-

col view of parties in I, and OUTΠ denote the protocol out-

put. For 0 < t < m, we say that Π is a t-private protocol

for computing f if there exists a probabilistic polynomial-

time algorithm S, such that, for every subset of [m], I, with

|I| ≤ t and every x, it holds that

< S(I, xI, f(x)), f(x) >
C
=< V IEWΠ

I (x), OUTΠ(x) >

where
C
= denotes computational indistinguishability. A pro-

tocol is called private if it is 1-private. A protocol is called

fully private if it is (m-1)-private [1].

In other words, a protocol is called t-private if no collusion

containing at most t parties can get any additional infor-

mation from its execution. Following theorem declared that

SPoS protocol has the highest level of collusion-resistance,

i.e., for any party, say Party i, even if all other parties col-

lude, they can infer nothing about Party i.

Theorem 1 (Security of SPoS). SPoS protocol is fully

private ((m-1)-private) where m is the number of parties.

The procedure in SPoS protocol includes many opera-

tions in which each party interacts with each other party.

Since the number of the parties ism, the total cost isO(m2).

The following theorem shows that the running time of these

operations is just O(m), not O(m2), because all parties per-

form these operations in parallel.
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Theorem 2 m parties collaborate to achieve a process in

which each party achieves the same operation with each

other party. Suppose that the running time of such an op-

eration is T and no party can achieve that operation with

more than one party simultaneously. The total cost is then

m(m − 1)T/2, and the running time is (m − 1)T when m

is even, mT when m is odd.

5. Security Enhancement

Although SPoS is a fully private protocol, we also need

considering the privacy of SRoS protocol. More specifically,

since publishing the secure product of summations is not

necessary, we will now discuss the information leakage due

to the publication of the secure product and then enhance

the security of SRoS protocol.

5.1 Privacy Problem
Suppose there are m parties, and each party i (∈ [m])

has a private input ix and a random number iz, where
ix, iz ∈ (0, 1). All of these m parties securely compute the

value of p = x · z (x =
∑m

i=1
ix and z =

∑m
i=1

iz) by using

SPoS protocol. We assume that a coalition of m−1 parties,

I = [m]−{1} = {2, 3, · · · ,m}, is interested in obtaining the

private value of party 1, 1x. Since p = x · z, we have

x′ + 1x = x =
p

z
=

p

z′ + 1z
, (4)

where x′ =
∑m

i=2
ix and z′ =

∑m
i=2

iz. Therefore,

1x =
p

z′ + 1z
− x′. (5)

Coalition I has the values of 2x, 3x, · · · ,mx, 2z, 3z, · · · ,mz,

p, but does not know the value of 1z. Nevertheless, it knows

that 0 < 1z < 1, which implies that

1x ∈
(

p

z′ + 1
− x′,

p

z′
− x′

)
. (6)

Now, let us discuss the length of this interval. We consider

a specific case in which ix ≈ 0 and iz ≈ 1 (∀i ∈ I). Hence,

x′ = 2x+3x+· · ·+mx ≈ 0 and z′ = 2z+3z+· · ·+mz ≈ m−1.

Without loss of generality, we assume that m − 1 − ϵ <

c′ < m− 1 and x′ is efficiently small so that x′ < m
z′+1

− 1

(Notice that z′+1 < m). Therefore, p = (z′+1z)(x′+1x) <

(z′ + 1)(x′ + 1) < m. Hence, the interval in (6) is

( p

c′
− x′

)
−
(

p

c′ + 1
− x′

)
=

p

c′(c′ + 1)
<

m

c′(c′ + 1)

<
m

(m− 1− ϵ)(m− ϵ)
<

1

m− (1 + 2ϵ)
≈ 1

m− 1
.

(7)

That is to say, the length of this interval is near 1
m−1

if ϵ

is efficiently small. However, m is generally quite large, so
1

m−1
is quite small. As a result, coalition I can locate 1x in

a small interval (6). I.e., the privacy of 1x is revealed.

5.2 Security Improvement
This privacy problem is due to the publication of the se-

cure product of summations. To avoid this problem, we will

improve our algorithm so that no intermediate information

is published. Our basic idea is converting the objective

function on secure summations into a polynomial of these

summations so that the objective function can be directly

computed by using the SPoS protocol. Now, let us review

the SRoS problem. In this problem, each party i(∈ [m]) has

two inputs, ix and iy. These m parties attempt to securely

compute the value of r =

∑m
i=1

ix∑m
i=1

iy
without revealing any

secure input to other parties. It can be rewritten as follows.

r = (1x+ 2x+ · · ·+ mx) · 1
1y + 2y + · · ·+ my

. (8)

Let y = 1y+2y+· · ·+my ∈ (0,m). Suppose ỹ := y
m

∈ (0, 1).

Then, the Taylor series of the second item is

1

y
=

1

m
· 1
ỹ
=

1

m
·

∞∑
t=0

(1− ỹ)t =
1

m
·

∞∑
t=0

(m− y

m

)t
=

1

m
·

∞∑
t=0

(
m∑
i=1

1− iy

m

)t

=
1

m
·

∞∑
t=0

(
m∑
i=1

iȳ

)t

,

(9)

where iȳ =
1− iy

m
∈ (0,

1

m
) is a private input of party i.

Therefore,

r =
1x+ 2x+ · · ·+ mx

m
·

∞∑
t=0

(1ȳ + 2ȳ + · · ·+ mȳ
)t

≈
1x+ 2x+ · · ·+ mx

m
·

T∑
t=0

(1ȳ + 2ȳ + · · ·+ mȳ
)t
.

(10)

In the following, we will randomly share r (10) directly

by performing the SPoS protocol repeatedly. Throughout

our approach, no intermediate information is revealed other

than random numbers.

Suppose ix in (10) is a real number smaller than 1 and

is accurate to several decimal places. It can then be repre-

sented as a ratio of two integers, i.e., ix =
ia

A
, where A is a

constant. For example, if ix is accurate to 6 decimal places,

then ix =
ia

A
, where A = 106, and ia < A. Similarly, we

also suppose iȳ =
ib

B
, where ib <

B

m
(since iȳ ∈ (0,

1

m
)).

Therefore, (10) becomes the following formulation.

r ≈ 1

m
·
1a+ · · ·+ ma

A
·

T∑
t=0

(
1b+ · · ·+ mb

B

)t

=
1a+ · · ·+ ma

mABT
·

T∑
t=0

BT−t (1b+ · · ·+ mb
)t
.

(11)

Now, we randomly share (11). We first share the item (1b+
2b+ · · ·+mb)t (t = 2, 3, · · · , T ) by using the SPoS protocol

(Table 1) iteratively. Suppose the random shares of (1b +
2b+ · · ·+ mb)t−1 are 1rt−1,

2rt−1, · · · ,mrt−1, i.e.,

1rt−1 +
2rt−1 + · · ·+ mrt−1 = (1b+ · · ·+ mb)t−1. (12)

Then, the random shares of (1b + 2b + · · · + mb)t can

be generated by using the SPoS protocol by regarding
1rt−1,

2rt−1, · · · ,mrt−1,
1 b, 2b, · · · ,mb as its inputs, i.e.,

3
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Figure 1: Taylor series of 1
y
.

1rt +
2rt + · · ·+ mrt

= (1b+ 2b+ · · ·+ mb)(1rt−1 + · · ·+ mrt−1)

= (1b+ 2b+ · · ·+ mb)t.

(13)

Using the shares of (1b+ 2b+ · · ·+mb)t for t = 2, 3, · · · , T ,
r can be written as

r ≈
1a+ · · ·+ ma

mABT
·

T∑
t=0

BT−t (1rt + · · ·+ mrt
)
. (14)

Each party i privately computes ir =
∑T

t=0 B
T−t · irt. (14)

then becomes

r ≈
1a+ · · ·+ ma

mABT
·
(1r + · · ·+ mr

)
. (15)

Last, they perform the SPoS protocol for (15), so that

1s+ · · ·+ ms = (1a+ · · ·+ ma) ·
(
1r + · · ·+ mr

)
. (16)

Here, each is is privately held by party i. If every party

publishes its is, every one can compute r as follows.

r ≈ 1

mABT
· (1s+ 2s+ · · ·+ ms). (17)

In this method, we only computed the T items in the Tay-

lor series. The Taylor series converges to the original func-

tion when T → ∞. Therefore, the larger the T , the more

accurate the result of the Taylor series. Figure 1 shows the

precisions of Taylor series with respect to different values of

T . Therefore, it is necessary to perform the SPoS protocol

for T times. Accordingly, the running time is also T times

longer than the original SRoS protocol.

Moreover, since ia < A, and ib <
B

m
, we have

1a+ 2a+ · · ·+ ma < mA,

BT−t
(
1b+ 2b+ · · ·+ mb

)t
< BT .

(18)

Therefore,

(1a+ · · ·+ ma) ·
∑T

t=0 B
T−t

(
1b+ · · ·+ mb

)t
< mTABT .

(19)

However, 1s, 2s, · · · ,ms are the shares of (19), so we

should choose a modulus, N , for the encryption, such that

N > mTABT .

5.3 Generalization
We showed that the ratio of secure summations can be

securely computed by using the above approach. In fact,

the secure computation for any infinitely differentiable func-

tion on secure summations can be performed by using this

method since an arbitrary infinitely differentiable function

can be converted to a Taylor series.

6. Conclusion

In this paper, we summed up several problems in privacy-

preserving data mining into a formal problem of secure

computation for the product of secure summation. We dis-

cussed the privacy of the proposed protocol, Secure Prod-

uct of Summations. This protocol satisfies the highest level

of collusion resistance – full-privacy, and therefore is more

secure than other related methods. In addition, we also

analyzed the privacy leakage due to the publication of the

intermediate massages and improved the privacy of this pro-

tocol. Since the secure computation of functions on secure

summations is a general issue in privacy-preserving data

mining, our proposed protocol can be applied to solve many

of the problems in this field.
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