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Using Sensitivity Analysis for Designing Resilient Systems
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In this paper, we present the research results on sensitivity analysis in probabilistic graphical models, in particular
Bayesian networks. We look at both the theory and application of sensitivity analysis in different domains, such
as modeling (to represent the different properties and relationships between the variables), inference (to provide
exact or approximate answers to user queries), and analysis (to summarize current behavior, predict future trends,
and suggest actions for achieving certain targets). We also discuss using sensitivity analysis for the problem of
designing systems that are resilient, such that the systems are resistant from large-scale perturbations caused by
unexpected events and changes, and if their functionality is lost temporarily due to outside forces, the systems can
recover gracefully and quickly to restore their functionality in the long run.

1. Introduction

The problem of systems resilience can be informally de-

fined as the ability “to maintain its core purpose and in-

tegrity in the face of dramatically changed circumstances”

[34]. In recent years, many researchers of different fields

have recognized the importance of a new research discipline

concerning the resilience of complex systems in the face of

unexpected events in terms of time and scale (such as the

3.11 earthquake in Japan, the global economic crisis, or a

new strain of virus) may cause irreversible damages to the

core functionality of these agent systems. The goal of re-

silience research is to provide a set of general principles for

building resilient systems in various domains, such that the

systems are resistant from large-scale perturbations caused

by unexpected events and changes, and if their functional-

ity is lost temporarily due to outside forces, the systems can

recover gracefully and quickly to restore their functionality

in the long run.

The concept of resilience has appeared in various dis-

ciplines such as environmental science, materials science,

sociology, ecology, disaster prevention, artificial intellignce,

and so on [17, 4, 23, 2]. However, while we have seen many

examples of seemingly resilient systems in various fields,

researchers have not agreed on a common definition on re-

silience among the different domains yet [33].

We have recently developed a new research topic called

“systems resilience”, to provide a set of unified design prin-

ciples for building resilient systems [22]. Our first step is to

define a novel system model called the SR-model [29].

The significant aspects of our SR-model are as follows.

The definition of the SR-model allows the system to change

dynamically over time, such that the variables, domains,

constraints, and configurations of the system can evolve

based on the decisions made by agents and/or outside en-

vironmental events. The flexibility of our SR-model allows

the modeling of the dynamicity of systems that is required

in many domains, and is based on Constraint Satisfaction

Problems (CSPs) [16]. Our SR-model enables us to mea-
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sure four important properties that are central to the idea

of resilience:

• Resistance: The ability to maintain under a certain

“threshold”, such that the system satisfies certain hard

constraints and does not suffer from irreversible dam-

ages.

• Recoverability : The ability to recover to a baseline of

acceptable quality as quickly and inexpensively as pos-

sible.

• Functionality : The ability to provide a guaranteed av-

erage degree of quality for a period of time.

• Stabilizability : The ability to avoid undergoing

changes that are associated with high transitional

costs.

In the current version of our SR-model, we assume that

we have a complete knowledge on all past and current con-

figurations of the variables in the dynamic system. How-

ever, in reality, we may only have uncertain information on

some of these configurations. Therefore, we must incorpo-

rate into our models with properties which allow for proba-

bilistic reasoning. In artificial intelligence, uncertain beliefs

have often been represented using probabilistic graphical

models, such as Bayesian Networks. In a Bayesian Net-

work, the inputs are the network structure, which specify

the causal relationships between variables, and the network

parameters, which specify the probabilities of local events,

while the outputs are the conclusions drawn from perform-

ing query inference, such as marginal probabilities.

In the next section, we will introduce Bayesian networks.

Afterwards, we will introduce sensitivity analysis, which is

the analysis of the relationships between changes in the in-

puts and the outputs of a mathematical model, and go over

some of the important theoretical results of sensitivity anal-

ysis of Bayesian networks. We then show a simple example

of performing sensitivity analysis on a Bayesian network.

Finally, we will point out some current and future research

directions in sensitivity analysis of Bayesian networks, and

how it can benefit the design of resilient systems.
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2. Bayesian Networks

A graphical model is a graph where variables are repre-

sented by nodes, and the nodes are connected by edges in

order to represent relationships between variables. The ex-

istence of an edge between two variables indicate that the

two variables are directly connected, while the absence of an

edge between two variables indicate they are not, and condi-

tional independence relationships exist between them. The

edges in a graphical model may be directed or undirected.

Usually, a directed edge means that the parent variable is

a cause of the child variable.∗1 If in a graphical model, all

edges are directed, and no cycles exist, the graph is called

a directed acyclic graph (DAG).

For example, we can construct a graphical model to rep-

resent the variables used for diagnosing lung cancer. The

individual’s personal behavior (e.g., smoking) will be a fac-

tor in determining whether the individual has lung cancer,

and will be directly connected to the lung cancer variable as

its parents. Symptoms (e.g., coughing) and tests (e.g., X-

ray) will depend on whether the individual has lung cancer,

and will be directly connected to the lung cancer variable

as its children. However, the two sets of variables above

are not directly connected with each other, because their

relationships are indirect through the lung cancer variable.

A more elaborate model with more variables and edges can

be created by incorporating the mechanism of humans de-

veloping lung cancer, such as adding a variable indicating

the individual’s tar deposits.

After constructing a graphical model to represent the de-

pendencies between the variables, we need to quantify the

strength of each dependency. A common way to do so

is to use probabilities, giving us a probabilistic graphical

models. For example, given two variables, X represent-

ing whether the individual is a smoker, and Y represent-

ing whether the individual has lung cancer, we can spec-

ify two probabilities, Pr(Y = true|X = true) = 0.2 and

Pr(Y = true|X = false) = 0.001 to quantify the strengths

of the influence of smoking on lung cancer. These proba-

bilities can be called local probabilities, and are probability

measures involving variables in localized structures, and can

be easily estimated from data or by experts.∗2

The most common probabilistic graphical models are

Bayesian networks. A Bayesian network [24, 15] consists of

a network structure, which is a directed acyclic graph, and a

set of network parameters, which are probabilities grouped

into tables called conditional probability tables (CPT). A

directed acyclic graph is a graph where variables are repre-

sented by nodes, which can be connected by directed edges

to represent relationships between variables, and no cycles

exist in the graph. The existence of a directed edge be-

tween two variables indicate that the two variables are di-

rectly connected, while the absence of an edge between two

∗1 While this is not necessarily true in some graphical models,

the causality relation is imposed in some models, such as the
causal Bayesian network [25].
∗2 In some graphical models such as Markov random fields,

the quantification does not represent probabilities, but
compatibilities.

variables indicate that they are not directly connected, and

conditional independence relationships exist between them.

Usually, a directed edge means that the parent variable is

a cause of the child variable [25].

The structure and the CPTs of a Bayesian network induce

a joint probability distribution Pr. The probability of an

instantiation x of all variables in the Bayesian network X,

is the product of all network parameters Pr(x | u) where

{x,u} is consistent with x:

Pr(x) =
∏

{x,u}∼x

Pr(x | u). (1)

Given the probability distribution Pr, we are interested

in the following three types of inference questions, which

we must use inference algorithms to compute the answer:

• What is the probability of evidence e, i.e., Pr(e)?

• What it the probability of some value y given evidence

e, i.e., Pr(y | e).

• What is the value of a set of variables Y which

has the highest probability given evidence e, i.e.,

maxy Pr(y | e)?

Query probabilities of the form Pr(y | e) can be called global

probabilities, and they involve variables that may not be di-

rectly connected. Note that for the third inference question,

we are interested in answers derived from global probabil-

ities, such as the most likely product a customer will buy,

instead of the values of the probabilities themselves.

The strengths of Bayesian networks come from three fac-

tors:

• The structure of Bayesian networks are able to rep-

resent the relationships between variables naturally,

efficiently, and succinctly, and the probability values

in the CPTs are meaningful values that can be easily

checked with real-world scenarios;

• The structure and CPTs of Bayesian networks can be

specified directly by domain experts, or obtained by

learning algorithms from data; (For a survey of learn-

ing algorithms, see Chapters 17 and 18 of [15])

• Many inference algorithms, both exact and approxi-

mate (for large and complex networks), can be ap-

plied to compute the answers of the inference ques-

tions. (For a survey of exact inference algorithms, see

Chapters 6, 7, 8, and 13 of [15]; for a survey of approx-

imate inference algorithms, see Chapters 14 and 15 of

[15])

Finally, the ability to update a Bayesian network accord-

ing to new data, discovery of new information, or user feed-

back, etc, is also one of its attractive features, and this is

where sensitivity analysis can be applied to modeling and

inference. Moreover, sensitivity analysis can also be used to

improve the process of building the Bayesian network from

data. We will discuss these topics in the next section.
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3. Sensitivity Analysis of Bayesian Net-
works

Sensitivity analysis is the analysis of the relationships be-

tween input changes and output changes in a mathematical

model. In the case of a Bayesian network, the inputs are

the local probabilities, i.e., network parameters, and the

outputs are the global probabilities, such as query results,

and other derived answers, such as most probable explana-

tions. In this case, sensitivity analysis of Bayesian networks

can help us answer many questions, such as [6]:

• What network parameters should we change to get a

desired change in a query result? And by how much?

• Will changing certain network parameters affect the

robustness of certain query results?

• How accurate should we estimate certain network pa-

rameters?

The topic of sensitivity analysis of Bayesian networks is a

research topic that has been developing since the 1990s,

using theoretical [20, 5, 18, 32] or empirical methods [26],

and has been applied to fields such as medicine [13]. We first

explain why these questions are important in the problem

of data modeling and inference.

Assume that we use a Bayesian network to model data,

and we can estimate each network parameter to a certain

degree of accuracy, either directly by the domain experts or

from data using learning algorithms. However, due to the

varying amounts of available relevant data, the degrees of

accuracy will be different for each parameter. Parameters

for more likely events will have a higher degree of accuracy

due to the large amount of available data, while parameters

for less likely events will have a lower degree of accuracy.

The company may want to know whether this uncertainty

will affect the performance of the Bayesian network. More-

over, they may want to know whether it is beneficial to get

more accurate estimates of these parameters, in terms of the

costs of collecting more data versus the increased accuracy

of the system. These questions can only be answered if we

understand the intricate dependencies between the param-

eters and the query results. Therefore, sensitivity analysis

can help build better Bayesian networks. When many vari-

ables are involved, a large number of parameters have to be

specified, and it is often difficult and expensive to estimate

all of them with great accuracy. With sensitivity analy-

sis, we can identify parameters where a small change can

greatly affect certain global query values, and those where

even a large change does not affect these global query val-

ues much. This can help direct the domain experts or the

learning algorithms to the parameter values that must be

accurately estimated.

Suppose now we have built a Bayesian network from the

current available data, and it is being used by many users.

However, we may need to modify the Bayesian network due

to many reasons. First, we will collect new data, which will

reflect more recent demographics and trends, meaning the

parameters will have to be revised to reflect them. Second,

we may discover new relationships between variables. We

may also receive feedback from the users or domain experts,

pointing out inaccuracies in certain parts of the model. Fi-

nally, in some cases, the results given by the model may not

match real-world results. Therefore, some of the parame-

ters may need to be “tuned” accordingly, and we need to

find out which parameters we need to change, and by how

much, while also ensuring that other query results remain

relatively robust, i.e., they do not change too much after

the parameters are changed.

We now summarize some of the theoretical results de-

veloped in sensitivity analysis of Bayesian networks. We

tackle our first problem, which is to find (minimum) pa-

rameter changes necessary to enforce a query constraint, in

the form of Pr(y | e) ≥ k,∗3 for every network parameter.

The results will give a list of suggested changes in single

parameters such that the query constraint can be enforced.

Notice that there may be not exist any possible changes for

some parameters, and in some cases, no solution at all can

be found.

Assuming that all variables are binary, for each pair of

co-varying network parameters Pr(x | u) and Pr(x̄ | u)

which must sum to 1, we introduce a meta-parameter τx|u,

such that Pr(x | u) = τx|u and Pr(x̄ | u) = 1 − τx|u.

This way we can change each pair of co-varying parameters

simultaneously.∗4 To find the necessary change in τx|u, we

need to compute the following [7]:

• The probabilities Pr(e) and Pr(y, e);

• The partial derivatives ∂Pr(e)
∂τx|u

and ∂Pr(y,e)
∂τx|u

.

We can show that the time and space complexity of comput-

ing the above values for all network parameters is O(n2w),

where n is the number of variables in the network, and w is

the tree-width of the network, which reflects the complexity

of its structure. This time and space complexity is indeed

the same as that of performing inference to compute the

probability of evidence Pr(e). Many inference algorithms

can be used to find the sensitivity results. One of them is

to compile an arithmetic circuit from the Bayesian network,

and iterating over the circuit in two passes, an upward pass

for computing the probabilities, and a downward pass for

computing the partial derivatives [14].

Instead of changing only single parameters, we can also

expand our search to find solutions where we change a com-

bination of multiple parameters. The problem is, tuning

multiple parameters requires computing higher-order par-

tial derivatives in general, and is much more expensive

complexity-wise. However, if we limit the parameters to

those belonging to the same variable, i.e., they are in the

same CPT, only first-order partial derivatives are required,

∗3 We can also solve for other types of query constraints, such

as Pr(y | e) ≤ k, Pr(y | e) − Pr(z | e) ≥ k, and Pr(y |
e)/Pr(z | e) ≥ k.

∗4 If the variables are multi-valued, we can introduce a pro-
portional scheme of co-varying parameters. Other scheme of

co-varying parameters are also possible, as long as a linear
relation is maintained [28].
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which gives the same complexity as searching for single pa-

rameter changes, i.e., O(n2w) [8]. In this case, the solu-

tion, instead of intervals of single parameter changes, will be

higher dimensional regions of multiple parameter changes.

Therefore, from this solution space, we may want to sug-

gest a “preferred” solution which minimizes the disturbance

to the original parameters. One proposal is to return the

solution on the “same log-odds curve”, where the log-odds

change in each parameter is the same.

Another important inference result we are often inter-

ested in is the Most Probable Explanation (MPE), defined

as maxx Pr(x | e), which is the complete instantiation of

all variables X which has the highest probability given the

current evidence e. Sensitivity analysis can also be applied

to MPE, where we want to compute the allowable change in

a single parameter such that the MPE remains unchanged,

for every network parameter [10]. Because of the discrete

nature of MPE, instead of a linear relationship between the

probability of evidence and the meta-parameter τx|u, the

MPE instantiation and its probability will change abruptly

as we vary the parameter value. To find the allowable

change in τx|u, we need to compute the following:

• The current probability of the MPE;

• Two constants, which we will call r(e, τx|u) and

k(e, τx|u) respectively.

It turns out that the constants can be computed using a

maximizer circuit, which can be obtained from the arith-

metic circuit by changing the addition nodes into maximizer

nodes. Therefore, the time and space complexity for solving

this problem is also O(n2w).

The second problem we want to tackle is to bound the

effects of parameter changes on any general query, indepen-

dent of the network. For example, if a parameter changes

from 0.03 to 0.05, what is the impact on a query whose

current value is 0.7, without knowing the specifics of the

Bayesian network? We notice that in many cases, a small

absolute parameter change can induce a large absolute

query change, and a small relative parameter change can

also induce a large relative query change. Therefore, using

absolute or relative change to quantify a parameter change

is not possible to bound the amount of query change.

Assuming that we change the meta-parameter τx|u by an

arbitrary amount, such that the odds of x given u, defined

as O(x | u) = Pr(x | u)/Pr(x̄ | u), changes from O(x | u)

to O′(x | u). Moreover, the query value of y given e changes

as a result, from O(y | e) to O′(y | e). The following

theorem bounds the amount of change in the query [7]:

| lnO′(y | e)−lnO(y | e)| ≤ | lnO′(x | u)−lnO(x | u)|. (2)

That is, the log-odds change (or the relative odds change)

of the query is bounded by the log-odds change (or the

relative odds change) of the parameter. Therefore, the log-

odds change can be used to quantify a parameter change in

a Bayesian network. Note that the above result is network-

independent, and this bound can be computed in constant

time without knowing the specifics of the network, and can

serve as a preliminary recommendation when we are choos-

ing between different parameter changes to be applied.

Finally, we may also be interested in quantifying the

change in a probability distribution, instead of a single

probability value. Again, we will use a measure in the same

line as above, such that the measure can be used to bound

the amount of change in any arbitrary query. The measure

obtained, called the Chan-Darwiche distance measure [9],

is defined as follows between two probability distributions,

Pr and Pr′, over the same set of variables X:

CD(Pr, Pr′) = ln max
x

Pr′(x)

Pr(x)
−min

x

Pr′(x)

Pr(x)
. (3)

We can prove that the distance measure bounds the change

in any arbitrary query between the two distributions, such

that:

| lnO′(y | e)− lnO(y | e)| ≤ CD(Pr, Pr′). (4)

Therefore, this distance measure provides a worst-case

bound on the change in any arbitrary query, and gives a

useful quantification of the change from one probability

distribution to another. On the other hand, other existing

measures, such as the KL-divergence [19] and the Euclidean

distance, cannot provide such a worst-case bound.

Another important property of this measure is that given

two Bayesian networks that differ by only a single CPT,

the distance between the probability distributions obtained

from the two networks is simply the distance between the

two CPTs. Therefore, the distance measure between two

Bayesian networks can be easily computed in this case.

4. An Example of Sensitivity Analysis
of Bayesian Networks

We now show a simple example of performing sensitiv-

ity analysis on a Bayesian network. For an example, we

construct a Bayesian network to represent the decision of

whether a customer buys a product, with four variables:

• Interest represents whether the customer is interested

in this type of product.

• Price represents whether the price of the product is

high or low.

• History represents whether the customer has previ-

ously bought the same type of product.

• Buy represents whether the customer buys the prod-

uct.

We know that the customer’s interest is a factor in deter-

mining whether he has previously bought the same type of

product, while the price of the product and the customer’s

interest are both factors in determining whether he will buy

this product. Therefore, we can obtain the structure as

shown in Figure 1.

Now we compute query results using this Bayesian net-

work. For example, the probability that a customer will
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Interest Pr

yes 0.25
no 0.75

Price Pr

low 0.7

high 0.3

Interest History Pr

yes yes 0.4
yes no 0.6

yes yes 0.05
yes no 0.95

Interest Price Buy Pr

yes low yes 0.5

yes low no 0.5

yes high yes 0.1
yes high no 0.9

no low yes 0.2
no low no 0.8

no high yes 0.01
no high no 0.99

Figure 1: An example Bayesian network.

buy the product given that the price is low and he has pre-

viously bought the same type of product is Pr(Buy = yes |
Price = low,History = yes) = 0.4182.

However, after collecting customer data, we find that at

least half of the customers in this case bought the prod-

uct, so this probability should be higher, and the correct

result should be Pr(Buy = yes | Price = low,History =

yes) ≥ 0.5. We now need to update the Bayesian net-

work so that we can get the correct answer. We use

SamIam, a Bayesian network software tool developed by the

UCLA Automated Reasoning Group [31], to find the single

parameter changes that can enforce the query constraint

Pr(Buy = yes | Price = low,History = yes) ≥ 0.5. Two

suggestions of single parameter changes are returned, as

shown in Figure 2:

1. Increase Pr(Buy = yes | Interest = yes, Price =

low) from 0.5 to ≥ 0.6125.

2. Increase Pr(Buy = yes | Interest = no, Price = low)

from 0.2 to ≥ 0.5.

We can choose to adopt either of the above parameter

changes to our Bayesian network in order to satisfy our

query constraint. From the two suggestions, the first one

is close to the correct customer behavior, while the second

one is not. So we will choose to adopt the first suggestion,

and increase the probability of a customer buying a product

given that he is interested in this type of product and the

price is low, from 0.5 to at least 0.6125.

Figure 2: A screenshot of SamIam returning a list of sug-

gestions of single parameter changes for enforcing a user-

specified query constraint.

We can also ask SamIam to return multiple parameter

changes to enforce the query constraint, as shown in Fig-

ure 3. The suggestion returned is to increase both param-

eters, Pr(Buy = yes | Interest = yes, Price = low) from

0.5 to (at least) 0.5887, and Pr(Buy = yes | Interest =

no, Price = low) from 0.2 to (at least) 0.2635. Here,

we see that the amount of increase for the parameter

Pr(Buy = yes | Interest = yes, Price = low) when we

can change multiple parameters is only 0.0887 (from 0.5 to

0.5887), and thus is less than the amount of increase when

we can change only single parameters, which is 0.1125 (from

0.5 to 0.6125).

5. Application on Designing Resilient
Systems

Sensitivity analysis is an essential tool for designing re-

silient systems, by checking whether conclusions drawn

from model are robust against uncertainty (e.g., estimation

errors, environmental changes, unexpected events), and can

be used in systems design and model debugging. For exam-

ple, for model builders who design and debug models, they

may ask the questions:

• What are the weak points of model that may con-

tribute to large variations in output?

• What components we can change to improve model

robustness?

While for decision makers who use and evaluate models,

they may ask the questions:

• What are the causes of certain decisions being made

based on the model?

• How confident are we in the decisions against uncer-

tainty?
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Figure 3: A screenshot of SamIam returning suggestions

of multiple parameter changes for enforcing a user-specified

query constraint.

Sensitivity analysis can help researchers and scientists build

better models to represent the real world. We now present

a few applications of sensitivity analysis on modeling and

inference of Bayesian networks, from both a theoretical and

an application point of view.

As we said earlier, in Bayesian network modeling, the

structure and CPTs of Bayesian networks can be specified

directly by domain experts, or obtained by learning algo-

rithms from data. However, the former approach may be

difficult if we need to construct a Bayesian network with

many variables and edges. Instead, we will use learning

algorithms to obtain the Bayesian network from data. To

learn the structure of the Bayesian networks, we can use

learning algorithms which may be information-based such

as the AIC score [1], or constraint-based such as the PC

algorithm [30]; To learn the CPTs of the Bayesian network,

algorithms such as EM algorithm [21] can be applied.

Our sensitivity analysis results can be combined with

these model learning algorithms, for measuring the devi-

ation from the Bayesian network which is used as the data

model to the data, ensuring that it faithfully represents the

data, and also used to evaluate the contribution of any sub-

set of the data to the Bayesian network. This allows the

users of Bayesian networks to more thoroughly understand

the constructed Bayesian network in terms of the data.

As for inference algorithms, because we may not be able

to apply exact inference algorithms on large networks, ap-

proximate inference algorithms are often used to find ap-

proximate answers. In this case, our sensitivity analysis

results can be used for developing new approximate infer-

ence algorithms with computable bounds, which allows the

users of Bayesian networks to report the estimated errors in

their data analysis results. For example, we can simplify a

Bayesian network by deleting some of its edges, and obtain

a new network with a simpler structure, where inference can

be performed in less time. Sensitivity analysis can provide

guarantees on the real query results from the approximate

query results, by quantifying the amount of change from the

real network to the approximate network. Recent research

has shown promise in the inference method of loopy belief

propagation with edge deletion [11, 12].

From an application point of view, the incorporation of

sensitivity analysis into Bayesian network modeling and

inference software tools can greatly benefit the users of

Bayesian networks in modeling, understanding, and analyz-

ing the data collected. First of all, an automated process

of “tuning” network parameters according to user-specified

constraints, feedback, and real-life results can help us build

better Bayesian networks which more faithfully represent

the data, and also revise them when new data or informa-

tion is received. This can help reduce the costs and time

that may otherwise be used to re-create new Bayesian net-

works, and also provide an interactive interface for the users

of Bayesian networks in the modeling process.

Second, while many graphical Bayesian network software

tools do a good job of providing users with visual cues in-

dicating the current probabilities, they have not paid any

attention to the change in the state of belief due to new data

or information. However, it has been shown that users of

these tools have difficulty visualizing probabilistic changes

because of the large amount of information usually on dis-

play, the transient nature of the different probabilities, and

the unfamiliarity of probability theory. Sensitivity analy-

sis can thus be a great help for them for many purposes,

such as gauging the strength of new evidence, or comparing

the impact of a parameter change on different query values.

By providing a measure that quantifies probability changes,

we can help them visualize probabilistic changes and make

better decisions.

As of now, most Bayesian network software tools do not

have any implementation of sensitivity analysis. An excep-

tion is SamIam, which we presented in the previous section.

SamIam includes tools that allow users to build a Bayesian

network (either by hand or by learning algorithms), run dif-

ferent inference algorithms, and perform sensitivity analy-

sis. We believe the implementation of new research results

on sensitivity analysis in Bayesian network software tools

should be an important step in improving the productivity

and usability of these tools.

Finally, in Bayesian networks, the probability of evidence

is linear in terms of any single variable. However, in other

probabilistic graphical models with non-linear dependen-

cies or continuous variables, such as dynamic Bayesian net-

works, the relations become non-linear. For example, recent

sensitivity analysis results have been developed for hidden

Markov models [27]. For example, in influence diagrams,

which include both variable and decision nodes in order to

choose a strategy of decisions to maximize pay-off, the re-

lationship between the maximum pay-off (and the optimal

strategy) is non-linear in terms of the parameters. Despite

this, recent research has been applied in this domain and

satisfactory results are obtained [3]. We aim to extend the

results of sensitivity analysis of Bayesian networks to other

probabilistic graphical models.
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