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Logistic regression is one of the most widely used statistical methods in the fields of medical, social sciences,
marketing and etc. Enabling privacy preservation in logistic regression has attracted much attention recently.
However, logistic function is not available in the secure settings (encryptions are not applicable) because of its non-
linear property. In this work, we propose a preliminary approach to realize privacy-preserving logistic regression
in cryptographic notion. We propose to approximate logistic function by polynomial fitting in order to make
encryption applicable. And the experiment shows that our approach achieves good prediction accuracy compared
with original logistic regression.

1. Introduction

The traditional paradigm in machine learning is to learn a de-
cision model (such as a classifier) from a given data set. Many
techniques in machine learning follow gradient descent method to
discover this decision model, such as logistic regression, online
kernel machines, and etc. These algorithms often assume free ac-
cess to data, either at a centralized location or in federated forms.
Nowadays, data are often distributed among multiple parties: fi-
nancial data are often distributed among multiple banks and credit
institutions; medical records are distributed among multiple hos-
pitals and health care centers. Privacy and security concerns re-
strict these parties to directly share their private data with others.
In order to construct efficient machine learning algorithms on the
overall data while preserving privacy of each party’s data, privacy-
preserving machine learning becomes an emerging problem.

Logistic regression is a multivariate regression model used for
measuring the relationship between a categorical dependent vari-
able and several independent variables, by converting the depen-
dent variable to probability scores. It is one of the most widely
used statistical methods in social and medical science fields. For
example, it might be used to predict whether a voter will vote
Democratic or Republican, or whether a patient has disease. It
is valuable to enable privacy-preservation in logistic regression.
For privacy preservation in distributed machine learning, crypto-
graphic protocols, which are specifically designed for the target
algorithms, are often used. However, it is difficult to design cryp-
tographic protocols for logistic model, because logistic function
(sigmoid function), the crucial part in logistic model, is not readily
available in the secure settings due to its non-linear property. There
exists some works that incorporate privacy into logistic regression.
Fienberg et al. [2] focus on“ secure”logistic regression for hori-
zontally partitioned databases; they used secure summation, which
takes advantage of random perturbation, to fit with the exponential
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family formulation. Another work proposed by Chaudhuri et al.
[1] considered a privacy-preserving method for logistic regression
using the concept ofϵ−differential privacy. All of these works
avoid the problems of dealing with logistic function in the crypto-
graphic model by the other exist privacy preserving data analysis,
such as perturbation of the data and etc.

In our work, we propose cryptographically secure logistic re-
gression following stochastic gradient descent on vertically par-
titioned databases. In order to alleviate the problem mentioned
above, we make use of polynomial fitting to approximate the lo-
gistic function. Our approach achieves good prediction accuracy
compared with original logistic regression.

We organize the paper as follows: Section 2 gives a brief in-
troduction of logistic regression and homomorphic properties of
cryptography. Section 3 presents the two party setup, polynomial
fitting method and protocol for privacy-preserving logistic regres-
sion. In section 4, we illustrate the experiment and show the re-
sults.

2. Preliminaries

2.1 Gradient Descent Methods
Consider about a supervised learning setup. Each example is a

pair of (x, y). Loss functionl(ŷ, y) that measures the cost of pre-
dicting ŷ when the actual answer isy, and we consider the decision
modelf asf(x) which is a differentiable function and parameter-
ized by a weight vectorw. Let there beN examples in the data
set, then theempirical riskof prediction functionf is given by:

EN (f) =
1

N

N∑
i=1

l(f(xi), yi)

Many techniques in machine learning follow the gradient descent
methods[3] to learn the decision model. Batch Gradient Descent
(BGD) method is often used to minimize this empirical risk, in
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which each iteration updatesw by the gradient ofEN (f) :

wt+1 = wt − η
1

N
∇w

N∑
i=1

l(f(xi), yi)

In Stochastic Gradient Descent (SGD) [3], instead of computing
the gradient ofEN (f) exactly, the gradient is estimated on the ba-
sis of a single randomly picked example(xt, yt) at each iteration:

wt+1 = wt − ηt∇wl(f(xi), yi)

SGD is a great simplification of BGD, and it is attractive in
terms of computation time when the number of examples is huge.
In our work, we use SGD to learn the classifier of logistic regres-
sion.

2.2 Logistic Regression
The logistic model is designed to describe a probability, which

is always some number between 0 and 1. For example, in epi-
demiologic terms, such a probability gives the risk of an individ-
ual getting a disease. Therefore, it is set up to ensure that whatever
estimate of risk we get, it will always be some number between 0
and 1. The logistic function (sigmoid function) is defined as:

f(x) =
1

1 + exp(−wT x)

LetD be a set ofN points:

D = {(xi, yi)|xi ∈ Rm, yi ∈ {0, 1}}Ni=1

whereyi, in the epidemiologic example again, is either 1 or 0.yi
is reffered to be the label, which indicates if a patient is diseased
or non-diseased. The weight vectorw is obtained by maximizing
the loglikelihood:

log l(w) =
N∑
i=1

yi log f(xi) + (1− yi) log(1− f(xi))

The gradient has the form:

∇w = −
N∑
i=1

(yi − f(w, xi))xi

As for stochastic gradient descent, the update process performs as
follows:

wt+1 ← wt + ηt(yi − f(w, xi))xi

The objective function of logistic regression is known to be con-
vex. Thus, SGD procedure leads to the global optimal solution.

2.3 Pailliar Cryptosystem
The Paillier Cryptosystem [4] is a public key encryption scheme

that can be used to conceal information, with its homomorphic
properties.

• Homomorphic addition of plaintexts

– Encpk(m1; r1)Encpk(m2; r2) modn2

= Encpk(m1 +m2; r1, r2) modn

• Homomorphic multiplication of plaintexts

– Encpk(m1; r)
m2 modn2 = Encpk(m1m2; r) modn

In our work, we illustrate our proposal by using Pailliar cryp-
tosystem to preserve privacy of data.

3. Privacy-preserving Logistic Regression

In this section, we propose a protocol to perform two party pri-
vacy preserving logistic regression by Pailliar cryptosystem. We
also propose a sub-protocol to achieve secure polynomial compu-
tation.

3.1 Problem Statement
Classification includes two tasks: learning a classifier from data

(training data) with class labels; predicting the class labels for un-
labeled data by the classifier. For example, consider about a classi-
fication task of predicting diseases. The training data is made up of
medical records with labels“diseased”or“non-diseased”. The
classifier is used to predict whether the unlabeled medical records
are diseased or non-diseased.

Realization of the diseases predicition work involves two par-
ties: the health care center (Party A) who keeps the medicial
records of individuals and the hospital (Party B) who keeps di-
agnosis information of patients.

Given a data setX which includesN vectors:x1, x2, . . . , xN ,

each vectorxi represents medical records for an individual and
targety as shown below:

X :

x1 = (x1,1 x1,2 · · · x1,m)

x2 = (x2,1 x2,2 · · · x2,m)
...

...
. . .

...
xN = (xN,1 xN,2 · · · xN,m)

y : [y1, y2, · · · , yN ]T

We say thatyi is x
′
is class label (or observed target value).

As the example above, here the(1×m) vectorxi can be viewed
as holding the information of each individuali’s medical record,
andyi holds the corresponding diagnosis. So the health care center
which will be represented by Party A holdsX as its private infor-
mation; the hospital, represented by Party B, holds vectory as the
private information.

We are going to design a two party privacy-preserving protocol
for logistic regression. As mentioned above, the logistic function is
not readily available in the secure settings in which homomorphic
property of encryption works only for linear models. So, the cru-
cial part of enabling privacy-preserving logistic regression is find-
ing appropriate methods to deal with logistic function. We propose
to approximate logistic function by polynomial fitting.

3.2 Polynomial Fitting
The logistic model takes advantage of the logistic function (sig-

moid function), which is not readily available in the secure set-
tings. In order to keep the good property of logistic model, at
meanwhile maintaining the privacy of data, we propose a method
to approximate the logistic function in a way that the homomor-
phic property is available.

We aim to approximate the logistic function by polynomial fit-
ting. For example, Figure 1 shows a 7th degree polynomial func-
tion g(z) =

∑7
i=1 αiz

i. From the plot, we can see that this
polynomial function matches well with logistic function, however,
there exists oscillation wherez ∈ [−∞,−4] ∪ [4,∞]. So, when
using polynomial fitting to approximate logistic function, some as-
sumptions should be made: when the output of the simulated poly-
nomial function is not within the interval of[0, 1], it will be forced
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Figure 1: 7th polynomial fitting

to be within it. Thus, maintain the quality of logistic function (sig-
moid function).

Using polynomial fitting for the logistic function, the whole pro-
cess of logistic regression takes only sums and products, because
of which we are able to maintain the validity of cryptography.

3.3 Protocol 1
We proposeProtocol 1to perform two party secure computation

of polynomialg(z). It will be used as a sub-protocol for realizing
privacy-preserving logistic regression.

g(z) =

k∑
i=1

αiz
i

In this protocol, the two party: Alice and Bob take integerz− r

andr respectively as their private input. During the secure com-
putation, both parties know nothing but their own private informa-
tion. And after secure computation, they share the value of poly-
nomialg(z).

As in Pailliar cryptosystem, all the messages to be encrypted
must be integers, we expand all the coeffientsαi(1 ⩽ i ⩽ k) to
the times ofM (an integer that is large enough to makeαi to be
integers).

For brevity, we eliminate random numbers form the encryption
equation. We writeEncpk(m) instead ofEncpk(m; r) in the pro-
tocols.

3.4 Protocol 2
We proposeProtocol 2 to perform two-party secure logistic re-

gression. In order to distinguish the two parties fromProtocol 1,
we here use A and B to represent the two parties. Party A takes
N vectors fromX = (x1, x2, . . . , xN ) as input, and Party B takes
vectory as input. During the whole process, Party A knows noth-
ing but its own informationX,while Party B learns nothing but
the weight vector and its own information. When the protocol ter-
minates, Party B learns the final classiferw. Then, it can use the
securely computed weight vectorw to perform prediction.

In this protocol, step sizeηt might not be integer along with the
increasing oft. So, as inProtocol 1, we expand step sizeηt to the

times ofM
′
(an integer that is large enough to make all theηt to

be integers).

Protocol 1Secure Polynomial Computing

INPUT OF Alice: z − r ∈ Zq (q ≪ n)

INPUT OF Bob: r ∈ Zq

OUTPUT: sharessA + sB = Mg(z) ∈ ZM

CoefficientMαi(1 ⩽ i ⩽ k) is publicly available
Setup: Alice does:

generate a private and public key pair(sk, pk)

sendpk to Bob
1. Alice does:

for i from 1 to k

sendci = Encpk((z − r)i) to Bob
2. Bob does:

for i from 1 to k:
computeEncpk(z

i) = ci ·
∏i

j=1 Enc
θjr

j

pk (zi−j)

seth←
∏k

i=1 EncMαi
pk (zi)

sendh
′
= h · Encpk(−sB) to Alice

3. Alice computessA = Decsk(h
′
) = Mg(z)− sB

(θi is the opposite number of corresponding binomial coeffient,
for example, 3rd degree of polinomial:θ1 = 3, θ2 = −3,
θ3 = 1 )

Security Analysis: this protocol securely updatesw at each iter-
ation, however some vulnerabilities remain. After two more iter-
ations, Party B learns the difference ofw at each update. Ifx is
a low-dimensional binary vector, this may leak some information
aboutx. We are trying to figure out effective methods to fix this
problem. One way is updatingw within the cypher forms, in other
words, only the finalw can be seen by Party B. This need us to
detect some support protocols to handle division operation. Re-
garding the ”difference attack onw”, we give up describing more
secure version due to the space limitation.

3.5 Computational Complexity
In this section, we derive the computational complexity ofPro-

tocol 1andProtocol 2.
We illustrate the computational complexity ofProtocol 1 as

follows: In Step 1, Alice encrypts the messages fork times. If
we define the computational complexity of encryption asO(τ(n))

wheren is the important parameter in Pailliar cryptosystem and
τ(n) is an expression for computational complexity ofn with
respect to the encryption process. Hence, in this step, the com-
putational complexity isO(kτ(n)). In Step 2, Bob first com-
putes the cypher text ofzi and seth, which make the computa-
tional complexity to beO(τ(n) + k2 + k). In Step 3, compu-
tational complexity isO(τ(n)), as Alice does decryption once.
We summarize the computional complexity of this protocol as
O(g) = O((k + 2)τ(n) + k2 + k).

For Protocol 2, we determine the computational complexity of
one iteration as follows: in Step 1, as Party A does encryptions
for m times, the computational complexity isO(mτ(n)). Step
2 takesO(m + τ(n)) and Step 3 takesO(τ(n)). In Step 4,
two parties perform the secure polynomial computation. So the
computational complexity isO(g) as shown above. In Step 6,
Party B generates random numbers and does the updation, which
make the computational complexity to beO(2mτ(n)+2m). And
Step 7 and 8 takeO(mτ(n)) andO(mτ(n) + m) respectively.
The overall complexity for the entire process ofProtocol 2 is:
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Protocol 2Privacy-preserving Logistic Regression

INPUT OF A: DatasetX = (x1, x2, . . . , xN ), xi ∈ Zm
n

INPUT OF B: Target vectory = (y1, y2, . . . , ym), yi ∈ {0, 1}
OUTPUT: final classifierw = (w1, w2, . . . , wm)

(a) Setup: A generates a private and public key pair(sk, pk)

and sendpk to B; B generates a(1×m) zero vectorw.
(b) A randomly shuffles or reorders the DatasetX, and for each
elementxi(1 ⩽ i ⩽ N) of X, the following is performed:

1. A does:
for j from 1 tom:

sendEncpk(xi,j) to B.
2. B does:

generate random number:r
sendc = Encpk(−r) ·

∏m
j=1 Encpk(xi,j)

wj to A.
3. A does:

computed = Decsk(c) = w · xi − r

4. A and B conductProtocol 1:
A takesd and B takesr as input.
A and B sharesA + sB = Mg(w · xi).

5. A does:
for j from 1 tom:

sendc
′
j = Encpk(sAxij) to B.

6. B does:
for j from 1 tom:

generate random numberrj
computec

′′
j = c

′
jEncpk(xij)

sB

sendc
′′′
j =

Encpk(wj) · Encpk(xij)
MM

′
ηyi · c

′′−M
′
η

j ·
Encpk(−rj) to A.

7. A does:
for j from 1 tom:

sendd
′
j = Decsk(c

′′′
j ) to B.

8. B does:
computew

′
j = d

′
j + rj

normalizationwj =
w

′
j

MM ′

getw = (w1, . . . wj , . . . , wm)

O(N × ((4m+ 2)τ(n) + 5m+O(g))).

4. Experiment

In this experiment, we implement the original logistic regression
and our approach. The prediction accuracy is adopted to verify
that our approach maintain good performance while preserve the
privacy.

4.1 Dataset
Dataset SPECT∗1 (23 attributes, 267 examples), which de-

scribes diagnosing of cardiac Single Proton Emission Computed
Tomography images, is used in this experiment.

4.2 Settings
We implement the original logistic regression and our protocol.

At present, our protocol is implemented without any communi-
cations for the purpose of testing the feasibility. We conduct 7th

∗1 http://archive.ics.uci.edu/ml/datasets/SPECT+Heart

Table 1: Average prediction accuracy
Average Accuracy (%)

Original Algorithm 82.89
Our approach

(without communication) 82.35

degree polynomial fitting to approximate logistic function as men-
tioned in Sec. 3.2.

4.3 Result
Table 2. shows the average prediction accuracy of 100 times

running of original logistic regression and our approach. Our ap-
proach achieves82.35% prediction accuracy compared with the
82.89% of the original algorithm. This difference is aroused by
the approximation of polynomial fitting. There exists some devi-
ations between the polynomial function and the logistic function.

5. Conclusion

In this work, we have demonstrated a priliminary approach to
achieve two party privacy-preserving logistic regression. We pro-
pose to approximate the logisitic function by polynomial fitting to
handle the problem that logistic function is not readily available
in the secure settings. Our approach achieves good prediction ac-
curacy compared with the orginal logistic regression. Fixing the
vulnerability of the protocol remains to be our future work.
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