
The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

- 1 -

The Development of the Resource Broker of Desktop Grid Federation for

Tree Search Applications

Lung-Ping Chen
 *1

 I-Chen Wu, Chih-Wei Hsieh,

Der-Johng Sun, and Hung-Hsuan Lin
 *2

*1
 Tunghai University

*2

*2
National Chiao-Tung University

As the desktop grid federation has facilitated many large scale e-Science projects for the resource restricted

organizations, people start thinking about a wide variety of applications. This paper studies the desktop grids of

artificial intelligence computation applications that require dynamic and adaptive task control. This paper

discusses the development of the resource broker that assigns tasks based on user credits as well as resource

utilization for the users in and across the organizations. The result demonstrates that, in a desktop grid federation

using the well-designed broker, a number of organizations can perform large scale applications efficiently via

resource sharing.

1. Introduction

Desktop grid is a network computing model that can harvest

unused computational power from desktop level computers [1].

The execution of desktop grid applications is coordinated by a

central server node, which distributes task units over widely

worker nodes, awaits the execution results, and eventually

consolidates the result data. Considering the fact that today’s

personal computers are more powerful than workstations or even

mainframes in twenty years ago, this model can offer low-cost

and readily available resources by employing a large enough

number of workers. Today, many research organizations have

built desktop grids as a solution for large scale e-science projects.

Desktop grids have remarkable resilience in host connections

since the worker nodes can be of different operating systems, and

are not necessarily connection-oriented. For volunteer computing,

a server partitions and assigns tasks to the public anonymous

participants, called volunteers. Since volunteers are autonomous

and can connect or disconnect from time to time, the single-

worker response time is usually not a major concern. Statistically,

the resource availability can be maintained in a certain level with

an enough number of volunteers. Another model of desktop grid

is to have dedicated workers which are maintained and directly

controlled by the organization. A dedicated worker node

provides computing resources of guaranteed quality and quantity.

Most existing desktop grid platform are developed intended to

host Bag-of-Task (BoT) applications which contain a large set of

task units without explicit precedence relations. Compared to

other network computing models, the nature of loosely couple

communication of worker nodes of desktop grids makes resource

sharing much easier. The notion of reciprocal resource sharing

has enabled many large scale projects for the resource-restricted

organizations. Several infrastructures for resource sharing are

discussed as follows:

 Volunteer desktop grid: All the worker nodes of

different organizations are directly connected to a

central server [1,2]. The resource allocation policy is

implemented by using different credit calculation

formulas

 Grid computing community: A desktop grid can use the

nodes in a grid computing community [3,4] as its

workers.

 Peer to peer platform: This platform is based on peer to

peer protocol which can easily achieve fairness. The

key is to transfer data via the peer to peer network and

to evenly distribute communication and computation

load over the entire network.

The dynamic computation applications, requiring dynamic and

adaptive task control, are considered beyond the scope of above

platforms. The game tree search applications need to generate

and prune tasks over loosely coupled worker nodes in a timely

manner [5,6]. To address these issues, we develop a resource

broker for dynamic computation tasks. The resource broker uses

two-stage scheduling to ensure fairness resource sharing for the

workers in and across the desktop grids. Also, the proposed

broker supports push-mode communication that can generate and

prune tasks in a timely manner. So, prompt interaction and

dynamic job scheduling can be achieved. For example, in case

that one move of a board game is found to be winning, the push-

back winning message promptly hints the clients to stop jobs

under other sibling.

The remainder of this paper is organized as follows. Section 2

discusses the requirement of game tree search applications.

Section 3 discusses the system architecture of the desktop grid

system. Section 4 discusses the development of resource broker.

Finally, concluding remarks are made in Section 5.

2. Artificial Intelligence Game-Tree Search
Applications

2.1 Computer Board Games

A typical board game contains two players, Black and White,

which alternately place black and white stones on empty

Contact: Lung-Pin Chen, Dept. Computer Science and Information Science,

Tunghai University, No.181, Sec. 3, Taichung Port Rd., Situn District,

Taichung City 407, Taiwan, Phone:(04)+882-4-23590415, Fax:(04)+882-4-

23591567, lbchen@thu.edu.tw

3C3-IOS-2-5

The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

- 2 -

intersections of a Go board (a 19x19 board) in each turn. The

common computer board games include Connect6, Chess,

Chinese Chess and Go, Shogi, etc.

A game tree is a directed graph whose nodes represent states

of the game board and whose edges represent moves. The

computer board games heavily reply on tree search algorithms in

several ways. Starting from a state, the game tree search

algorithm is used to evaluate all possible moves and select a

move based on certain policy. The challenge of computer board

game comes from the fact that the size of state space of the game

trees is usually exponential to the input size. Thus, an efficient

tree search algorithm seeks to prune useless paths and go deep to

the possible best moves. A typical strategy for evaluating best

moves is to run a Monte Carlo tree search (MCTS) simulation of

the game playing processes.

2.2 Application Components

The game tree search application contains two major modules:

a game record editor and a job-level module. The game record

editor is the interface of the computer board games which

displays game status and waits for the player commands. A job-

level (or JL) module is the component that executes jobs such as

searching best game moves or end game matching.

The job-level module is a broker that accepts the game tree

search jobs from the game record editor and dispatch them to the

workers for running. Typical jobs are, by giving a start position,

finding the best move, expanding all possible moves of a board

state, or running a MCTS simulation. The execution result can be

the best move, all the moves, or the simulation result for

updating the tree. The job-level model defines the life cycle of a

game tree search task into four phases: selection, pre-update,

execution, and update phases.

In the board game application, both of the editor and job-level

module take huge amount of times or uncertain times for

executing tasks, making it difficult to be integrated. Thus, it

becomes significant to offload the game tree search jobs to other

workers.

3. System Architecture

This section describes the architecture of our computer game

desktop grid (CGDG) system.

3.1 User and Worker Organizations

Fig. 1. Organization of users and workers.

The CGDG system consists of users, workers, and a broker. A

user is usually the game record editor mentioned in Section 2,

which accepts game player's instructions and initial the game

computation tasks. The tasks are queued in the broker and are

dispatched to some workers. The job-level module is a worker

component that executes a tree search task.

The CGDG maintains four types of users, each with a

different permission level, as described as follows.

 System administrator: The administrator with full access to

every aspect of system data, including user profiles,

organization profiles, broker policies, and job priorities, etc.

 Organization administrator: Similar to the system

administrator but restricted to data of an organization.

 Standard user: A registered user that can submit normal

tasks via the game record editor.

 Advanced user: A user that is authenticated to submit tasks

with high priority.

Fig. 1 illustrates several user and workers in three

organizations.

3.2 Resource Broker

A CGDG system contains clients, workers, and VC server.

The client is a user application that generates jobs from time to

time, while a worker is a computer that requests and solves tasks

from VC server. The resource broker in the VC server is

designed to coordinate clients and workers, while the web

management system is used to manage accounts and system

settings, etc. The system is called a push-based VC (PVC)

system, since all connections among broker, clients and workers

are all dedicated and are allowed to push jobs or messages

immediately. For example, the clients push jobs to the broker that

in turn pushes to workers, and the workers push or stream the

results back to the broker which in turn pushes or streams them

back to the clients immediately. So, prompt interaction and

highly dynamic job scheduling can be achieved.

Fig. 2. Push-based communication of broker and workers.

Figure 2 shows the whole architecture of our PVC system. The

bolded lines indicate dedicated connections, while the dashed

lines indicate non-dedicated connections, e.g., HTTP requests.

As illustrated in Figure 3. The resource broker reserves a

buffer for each client. Whenever an available worker sends a task

request, the broker assigns a job choosing from some buffer. If

more than one client has one job in their corresponding buffers,

one of them is chosen and sent to the worker according to a

designated resource management policy.

The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

- 3 -

Figure 3: Job allocation in the broker.

4. Broker Resource Allocation

This subsection discusses the design and development of the

resource allocation policies in the desktop grid federation. In

additional to the resource utilization and system performance, the

resource broker also concerns the following properties:

 Fairness: for each participant of the federation, the

resource utilization is proportional to the user credits.

 Starvation-free: To avoid the situation that some

organization cannot get minimal resource for a long

time, the broker increases task priority as time goes by.

In each organization, all the tasks are clustered into three

classes, A, B, and C. The class A and B, represent the priority of

tasks that are submitted by the owner of the desktop grid, while

class C represents the priority of the tasks that are generated by

some other organizations. The class A, with highest priority, is

intended for those interactive or responsive tasks. The tasks of

class B are normal tasks and only gain the resource while class A

tasks are idle.

The resource allocation algorithm is described follows:

1. A user submits a task to the broker, with an annotation

describing the task properties, such as interactive or a normal

long-term task.

2. When a broker receives the task, it first tries to assign the

task the workers in the organization where the user belongs to.

That is, an organization donates its resources only when its

tasks completion rate exceeds that of generation. If the

organization cannot host the new task, the broker checks the

status of the desktop grids in other organizations.

3. If the broker decides to assign organization X’s task to

some other organization Y, the task is classified as class C in

organization Y. The class C task in organization Y can be

executed only when Y’s tasks are idle.

To manage the game tree search applications of which tree

nodes are generated and pruned dynamically, the broker

calculates the credits of organizations based on the amount of

donated resources. The amount of resources is calculated in

terms of CPU cycles, storage space, and network bandwidth etc.

Across different organizations, tasks are allocated based on

fairness and starvation-free principles. When there are two or

more organizations try to assign tasks via the federation broker,

the priority is basically proportional to the credits. Also, in order

to prevent starvation, the credits decline over time in a certain

ratio.

4. Conclusions

We develop the desktop grids with the push-mode streaming

infrastructure in order to support tightly coupled task control.

The push-mode streaming communication can significantly

reduce the redundant computations as tree nodes can be

generated and pruned in a timely manner. This paper also

depicts the characteristics of dynamic game tree search

applications and discusses the development of the resource

broker for the desktop grid federation of such applications.

Acknowledgement

This work was supported in part by the National Science Council

of the Republic of China (Taiwan) under Contracts NSC 97-

2221-E-009-126-MY3, NSC 99-2221-E-009-102-MY3, NSC

99-2221-E-009-104-MY3, and NSC 101-2221-E-029-04.

References

[1] Anderson, D. P., “Boinc: A system for public-resource

computing and storage”, 5th IEEE/ACM International

Workshop on Grid Computing, November 2004.

[2] Fedak, G., Germain, C., Neri, V., and Cappello, F. Xtremweb:

A generic global computing system. In Proceedings of the

1st IEEE/ACM International Symposium on Cluster

Computing and the Grid (CCGRID 2001): Workshop on

Global Computing on Personal Devices, IEEE CS Press,

Brisbane, Australia, 582-587, 2001.

[3] Foster, I., Kesselman, C. The Grid: Blueprint for a New

Computing Infrastructure, Morgan Kaufmann Publishers,

Inc., 1999.

 [4] Taiwan UniGrid website, available at

http://www.unigrid.org.tw/info.html

[5] Wu, I.C., Huang, D.Y., and Chang, H.C., “Connect6”, ICGA

Journal, Vol. 28, No. 4, pp. 234-241, December 2005.

[6] Wu, I.C., Chen, C.P., “Desktop Grid Computing System for

Connect6 Application”, Institute of Computer Science and

Engineering College of Computer Science NCTU, August

2009.SW

[7] Wu, I.C., Jou, C.Y., “The Study and Design of the Generic

Application Framework and Resource Allocation

Management for the Desktop Grid CGDG”, Institute of

Computer Science and Engineering College of Computer

Science NCTU, 2010.

[8] Wu, I.C., Han, S.Y., “The Study of the Worker in a

Volunteer Computing System for Computer Games”,

Institute of Computer Science and Engineering College of

Computer Science NCTU, 2011.

