
The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

- 1 -

An Efficient Index Structure for Go

Yu-Jie Ho1 Shun-Chin Hsu2 Shi-Jim Yen1
1Dept. of Computer Science
and Information Engineering,
National Dong Hwa
University, Taiwan.

2Department of Information
Management,
Chang Jung Christian
University, Taiwan.

1Dept. of Computer Science
and Information Engineering,
National Dong Hwa
University, Taiwan.

1. Introduction
Pattern matching is an important problem in computer Go.

Many pattern matching methods are proposed in [1][11][12].
Most of them only discuss about how to find a pattern of pattern
database in a game board. This thesis discusses how to find a
query pattern in a lot of Go game records and how to build a Go
game records information retrieval system. This system can
select and return to the user desired pattern from a large set of Go
game records in accordance with criteria specified by the user. In
this system, inputs are query patterns and outputs are the game
record information, such as number of game records, move
sequence, players’ names and final results. Information retrieval
concepts and techniques will be applied in this system.

Retrieval a query pattern from a lot of game records is useful
for Go player and computer Go programmers. A Go player may
be interesting on how to play in a special situation. For example,
it is difficult to most Go players for life-and-dead problems. If he
has the Go game records information retrieval system, he may
find this life-and-dead problem occurred in the game record.
Some Go players may be interesting to know what kind of
opening is often used by Go professors. The winning rate of each
opening style is also interesting. The system will be useful.

For computer Go development, the Go game records
information retrieval system can help the programmers to
maintain the pattern database and find more useful patterns.
When the pattern database get large, pattern inconsistence
problem will occur. Retrieve those inconsistence patterns from
the history record game record of the program will help to solve
this problem. Many researches try to apply matching learning
technique to find useful patterns based on Go game records.
Researches regards game records as text strings by suitable
encoding from each move to a character, and uses approaches of
natural language processes and statistics to acquire sequence
patterns are proposed in [4][5][6]. In [7][8], the authors proposed
methods of learning to predict Life and Death and score final
positions in the game of Go from game records by well designed
data structure and good classifiers. Game records are used as the
training data of neural networks [9]. A rule based expert system
could be build up by knowledge acquisition from game records
[10].

2. Proposed approaches

2.1 3.1 Apply KMP algorithm on Go game record
KMP algorithm helps to skip unnecessary matching, we apply

1–dimensional string matching algorithm on 2–dimensional
pattern and board by regarding a 2-D pattern as a set of 1-D
pattern. The steps are as follows.

Step1. Choose the row which is most suitable for KMP
algorithm as the target row pattern. Row patterns in the set
will be ranked according to their

i) Fixed state: Choose the row pattern with fixed state.
ii) Length
iii) If the row pattern has the same length, then choose the

one has highest degree of repetition. (i.e. Frequency of the
same substring appears in the pattern. The prefix function has
contained this information)

Step2. Search the target pattern decided in step 1 on the
board (row by row) by using KMP algorithm.

Step3. If the target pattern appear at somewhere on the board,
then check every element in the query pattern with points
around by bit mapping sequentially:

 P: Query pattern
 S: Board situation around the matched pattern.
 R := P AND S
 If R := S, then success Else fail

Repeat 1~3 until all the rows are scanned.

2.2 Feature Patterns
In order to construct the index structure, we have to extract the

feature of data, and use them as the indexing key. In our
approach, we use 400 “featured patterns”. Featured patterns are
some patterns that appear frequently in GO game. These patterns
are part of pattern databases of the computer program “Jimmy”,
which is developed from 1994[1]. Almost all significant moves
can be recognized by the pattern database system. Each of them
has its own meaning in Go game, they could be considered as
“jump“, “knight`s move“, or “diagonal” in Go game, but most of
them are more complicated.

Figure 1 shows the way we represent the feature patterns. We
use 4 bits to express 4 possible states of every point. Bit 1 means
this point could be empty or not; bit 2 means this point could be
black stone or not; bit 3 means this point could be white stone or

Contact: Shi-Jim Yen, Dept. of CSIE, National Dong Hwa Uni.,
Taiwan, Address: No. 1, Sec. 2, Da Hsueh Rd., Shoufeng,
Hualien 97401, Taiwan. Tel: +886-3-8634031, FAX: +886-
3-8634010, E-mail address: sjyen@mail.ndhu.edu.tw

3C3-IOS-2-7

The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

- 2 -

not, and bit 4 means this point could be border or not. Every
number in the array is generated from 4 bits. [3]

Figure 1. A representation of feature pattern

For example, a number “3” in the array means its relative

binary number is “0011”, and this means this point which is
marked by “3” could be either “Black Stone” or “Empty”.(The
“*” point means it is a important position which has special
meaning or value for player. In this paper, it will be looked as
“1”)

Approach in 2.1 handles most 2-D patterns. However, we still
have to generate all possible patterns if every row pattern in a
query pattern contains unfixed element(s) (i.e. points marked by
“3”,”5”,”6”). For example, a row pattern “3144” will be turned
into “1144” and “2144”. Because every “3” means that point can
be “1”(empty) or “2”(black).

These feature patterns are good indexing keys. Each of them
has its own characteristics and meanings. By using them and a
suitable indexing structure, we can classify game records
systematically.

2.3 Index structure and searching approach
We now combine integrate our feature pattern with a popular

index structure “inverted list”. We use proposed pattern
searching approach to find board situations contain each feature
pattern, and build an inverted file for our game records. All board
situations were classified according to the feature pattern(s) they
contain. This will be a good characteristic for matching
processing. Almost every reasonable query pattern contains at
last one feature pattern, and it is easy to perform logical
operations such like “AND” “OR” under this structure.

After the inverted file was built up, pattern matching
approaches proposed in [11][12][13] will be applied on every
query pattern to check which feature patterns it contains. We
then know which set of board situations the query pattern may
appear according to the result. For example, if the pattern
matcher shows that the query pattern contains feature pattern 1
and feature pattern 3, we will only search it in the set (1∩2).

In pattern searching, we have to consider all the actions
(rotation, reflection, and color changing) of query patterns. All
patterns (16 situations) generated from query patterns through
these situations will be found.

3. Conclusion
In this paper, we propose a simple, yet efficient index structure

for Go game records. This approach is based on KMP algorithm

and the feature patterns extracting from the pattern database of
Go program “Jimmy”. This structure could improve the speed of
pattern searching to a satisfactory time.

Comparing with pattern searching in unstructured game record
database using KMP algorithm, the proposed structure classifies
board situations according to significant feature patterns they
contain(most significant query pattern contain at least one of
these feature pattern), therefore, it can help pattern matcher to
skip most unnecessary matching. With proposed structure, we are
able to construct a go game record information retrieval system
which handles both pattern view and text view queries. This
system will be useful for Go players and computer Go
researchers.

References
[1] Shi-Jim Yen, Design and Implementation of a Computer GO
Program JIMMY. Phd. Thesis, National Taiwan University,
Taiwan. (in Chinese)
[2] Shiou-jiun Chen,“Numeric Indexing Approach for Music
Database Retrieval,” Chaoyanh University, Master Thesis, 2002.
[3] Kuo Tung Hsu, ”Pattern recognization in Go game records”,
National Dong Hwa University, Master Thesis, 2004.
[4] Teigo NAKAMURA, Takashi KAJIYAMA, “Feature
Extraction from Encoded Texts of Moves and Categorization of
Game Records,” Department of Artificial Intelligence, Kyushu
Institute of Technology, Japan.
[5] Teigo NAKAMURA, “Acquisition of Move Sequence
Patterns from Game Record Database Using n-gram Statistics,”
Department of Artificial Intelligence, Kyushu Institute of
Technology, Japan.
[6] Teigo NAKAMURA, Takashi KAJIYAMA, ”Automatic
Acquisition of Move Sequence Patterns from Encoded Strings of
Go Moves”, Department of Artificial Intelligence, Kyushu
Institute of Technology, Japan.
[7] Erik C.D. van der Werf, Mark H.M.Winands, H. Jaap van den
Herik and Jos W.H.M. Uiterwijk, “Learning to Predict Life and
Death from Go Game Records,” Dept. of Computer Science,
Universiteit Maastricht.
[8] E.C.D. van der Werf, H.J. van den Herik, J.W.H.M. Uiterwijk,
“Learning to Score Final Positions in the Game of Go,”
Department of Computer Science, Universiteit Maastricht.
[9] George Konidaris Dylan Shell Nir Oren, ”Evolving Neural
Networks for the Capture Game,” School of Computer Science
University of the Witwatersrand, Johannesburg.
[10] Takuya Kojima Atsushi Yoshikawa, ”Knowledge
Acquisition from Game Records,” NTT Communication Science
Labs, Japan.
[11] Mark Boon, “A Pattern Matcher for Goliath,” Computer
Go, No.13, pp.12-24, 1990.
[12] Martin Mueller, “Pattern Matching in Explorer,” the Game
Playing System Workshop, pp.1-3, Tokyo, Japan, 1991.
[13] Yu-Tang Lee, “Pattern Matching in Go based on Patricia
Tree,” National Dong Hwa University, Master Thesis, 2004.

Bit 4 Bit 3 Bit 2 Bit 1

Border White Stone Black Stone Empty
0/1 0/1 0/1 0/1

1111
1411
1241
1111

	1. Introduction
	2. Proposed approaches
	2.1 3.1 Apply KMP algorithm on Go game record
	2.2 Feature Patterns
	2.3 Index structure and searching approach

	3. Conclusion
	References

