
The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

- 1 -

A Comparison between Genetic and Memetic Algorithm
for Automated Music Composition System

Mondheera Pituxcoosuvarn, Roberto Legaspi, Rafael Cabredo, Ken-ichi Fukui, Koichi Moriyama,
Noriko Otani*, Satoshi Kurihara, Masayuki Numao

The Institute of Scientific and Industrial Research, Osaka University
Faculty of Informatics, Tokyo City University*

Automatic music composition has been a challenging, interesting, and yet still much to be explored task primarily because

it is hard to distinguish which song is good or bad which significantly impedes the automated composition process. Despite
this difficulty, automated music composition would benefit many groups of people who ought to use a piece of their own
music, as composed for them by an AI system with compositional intelligence, without someone else’s copyright for some
purpose such as a music piece for a commercial, or a song played in the background of a presentation. Our composition
system composes eight-bar tracks, based on western music theory and listener evaluation. We present here the use of
memetic algorithm, comparing to using the conventional genetic algorithm. The same representation and evaluation for both
techniques are used because of the similarity of these two algorithms. The main difference of memetic algorithm with genetic
algorithm is the local search process. Both algorithms are implemented separately to spot the difference between the results
then we evaluated the algorithms. When the outcomes are compared, we found that the use of memetic algorithm performs
better in terms of quality of musical piece and convergence speed.

1. Introduction
Music composition is normally done by music experts and

music composers. They use both feeling and musical knowledge
to come up with good pieces of music. In some cases, we might
want to get a generated music without the need of hiring a
composer, and achieving this kind of intelligence has become
one of the computer scientists’ dreams. Automatic music
composition would benefit many groups of people who ought to
use a piece of their own music composed for them by an AI
system with compositional intelligence such that it is not under
someone else’s copyright, for a purpose such as for a commercial
or to be played in the background in a presentation.

Automated music composition problem is challenging and
interesting for computer scientists. Unlike neither scientific nor
mathematical problems, the beauty of music is difficult to judge
since it is art and subjective. There is no way that many people
will judge a song in the same way. Everything is about how an
individual feels. These are the reason why it challenges us to
work on this project. We have tried to automate the composition
of a completely new song from scratch, but then the generated
music should not merely consist of a set of random notes—it has
to incorporate a certain degree of creativity based on the music
theory. In real life, a person who wants to try writing a piece of
musical melody either has to understand music theory or to be
really talented.

Genetic algorithm (GA) and memetic algorithm (MA) were
chosen in order to solve this problem and to be compared against
each other. MA includes a local search process, which might be
helpful to solve problems that we already know how to improve.
To illustrate, we basically know how to improvise a song by
applying music theory. Then we create a set of rules extracted
from music theory that will become our MA local search

function. Without any idea of how to improve an individual, the
local search might not be useful.

2. Background

2.1 Music Background
This section outlines fundamental western music knowledge

that is needed when automating composition using artificial
intelligence techniques. To compose a piece of music, we need to
arrange symbols including notes and rests. In this research
project, only western music theory is used for international
standardization.

2.1.1 Note and Rest

A note is a fundamental and important part of music. It has
two main characteristics: pitch and duration. Music pitch often
refers to the frequency of the sound. In science, pitch means
higher frequency and lower frequency. Note value or note
duration is a value showing how long a note is meant to be
played. Notes are normally written on “staffs” or “staves”, each
of which consists of a set of five horizontal lines. In western
music theory, songs are written based on twelve notes including
C, C#/Db, D, D#/Eb, E, F, F#/Gb, G, G#/Ab, A, A#/Bb, and B.
In many countries especially in Latin America, Eastern Europe,
and Southern Europe, another system of naming notes is used,
which are Do for C, Re for D, Mi for E, Fa for F, Sol for G, La
for A, and Ti or Si for B. There are 5 notes that have two names
that are represented as black keys on a keyboard.

Apart from the pitch, another important part of a note is the
note value and note duration. Note duration, as shown in the
figure 1, is about how long the note will be played, represented
by the shape of the note symbol. One whole note has a duration
equals to two half notes. Half note duration is equal to two-
quarter notes. An eights notes duration equals two sixteenth notes.
There are more types of note durations but these five are the most
used ones. Contact: Mondheera Pituxcoosuvarn, The Institute of Scientific

and Industrial Research, Osaka University, 8-1 Mihogaoka,
Ibaraki, Osaka, 567-0047, Japan, Tel: +81-6-6879-8426,
Fax: +81-6-6879-8428, mondheera@ai.sanken.osaka-u.ac.jp

2C4-IOS-3c-4

The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

- 2 -

Figure 1 Note duration chart [Miller 2005]

Corresponding to the notes, there is another set of symbols,
leaving some part of the song silent, called “rest”. Those rests are
displayed below. However, the exact duration in terms of actual
time of the notes and the rests is defined by the tempo.

Figure 2 Notes and rests [Miller 2005]

2.1.2 Interval
Interval is the distance between 2 notes. The smallest interval

for Western music is a semitone or a half step. There are a
number of types of interval depends on the size and the quality.
Interval size is about the space between those 2 notes. For
example, there are 5 notes from C to G, so this interval is “fifth”
or “5th Interval”. The other name and size is shown in the Figure
3.

Figure 3 Basic intervals, starting at C [Miller 2005]

Regarding the quality of an interval, there are various types

depending on how well those two notes go together. The biggest
categories are “perfect interval” and “non-perfect interval”. The
perfect intervals are unison, fourth, fifth, and octave. When a
perfect interval is lowered by a semitone, it comes to be
“diminished”. But if it is raised by a semitone, it is called
“augmented”. For non-perfect intervals, there are second, third,
sixth, and seventh which can be either major or minor. Major
intervals are the natural state in major scales. If a major interval
is raised by a semitone, it becomes “augmented”, but if it is
lowered by a semitone, it changes into minor. On the contrary, if
a minor is raised by a semitone it turns into “major” but if it is
lowered by a semitone it becomes “diminished”.

2.1.3 Scale

A scale is composed arbitrary of a series of notes. Nowadays
mainly two scales that are still used to compose a song generally:
major and minor scales. Every scale starts from a note and end at
the same note in one-higher octave. There are twelve notes in one
octave but there are only eight notes in a scale. To construct a
scale, specific intervals are used. In use, composers normally use
note in a specific scale to write a piece of music.

In a major scale, C Major contains C, D, E, F, G, A, B, C. The
first note in the scale is called “Tonic” and the intervals between
each notes are 2, 2, 1, 2, 2, 2, 1 semitone respectively.

Figure 4 An Example of major scales [Miller 2005]

Minor mode is more complicated than major mode. There are

three types of minor scale: “natural minor”, “harmonic minor”,
and “melodic minor”. As with the major scale, interval plays the
only role here. A natural scale is composed of a tonic and the
note with 2, 1, 2, 2, 1, 2, 2 semitones in order. The harmonic
minor scale is almost the same as the natural minor. The small
difference is the seventh note of this scale is raised by a semitone,
which makes the interval between the sixth and the seventh notes
become three semitones. It sometimes sounds abnormal and is
difficult to sing. As a consequence, the melodic minor scale
adjusted the too big interval, so the intervals turn into 2, 1, 2, 2, 2,
2, 1 semitones.

2.1.4 Motif
Motif is found in many parts of the composition. It is a very

short sentence of rhythm or melody and it is repeated many times.
Pitches can be adjusted but it will keep the rhythm as its
characteristic. A great example of using motif is Beethoven’s
Symphony No.5.

Figure 5 The motif from Beethoven’s Symphony No.5

2.2 Related Works
Recently, there have been several method presented for both

automatic music composition and automatic improvisation. GA
and other hybrid methods of GA are used for music composition

The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

- 3 -

by many researchers. [Marques 2000] [Unehara 2001]
[Sheikholharam 2008] [Maeda 2010]

By the way, other techniques are able to solve this problem.
Several researches are done using various methods, especially AI
algorithms. One of those is Chiu[2006]’s work that presented a
composition approach by discover the patterns and rules in
existing songs then automatically create a new piece which is
similar to the original songs.

MA is a fairly new population based algorithm and there exists
not so many works using this algorithm. This algorithm could be
seen as a hybrid or developed method of GA. The term “meme”
was coined by Dawkins[1976], an author, ethologist and
evolutionary biologist. This term refers to a unit of cultural
transmission similarly to gene. As a result, “memetics” is
corresponding to “genetics”. The first person that applied meme
concept to problem solving is Moscato[1989]. His algorithm is
named memetic algorithm (MA). Memetic algorithm was applied
to automated music composition without human evaluation.
[Wells 2011] Their work included a few rules from music theory,
used for fitness calculation and local search.

3. Automated Music Composition System
This project applies GA and MA as main method for music

composition. There is evaluation by human included in order to
estimate the quality of the composed piece since evaluation using
only few rules from music theory is not enough to judge the
results. Moreover music theory is just a concept we cannot make
sure that if we follow all the theory we will get a good song. For
these reason, human is needed to evaluate the songs

3.1 Composition Boundary
Music system used in this work is based on western music

theory with twelve notes, A to G#. To reduce the complexity,
only major scale is employed in the composition. The shortest
duration of note is sixteenth and the longest duration of note is
the whole. The same as most simple songs, time signature 4/4 is
applied and the length of the composition is set to eight bars. The
output of the composition is music melody in midi file format.

3.2 Genetic Representation
Our representation is based on GA. In one generation there are

a number of chromosome or population. Each chromosome,
representing one song, contains a number of notes. Each note has
two main characteristics: pitch and rhythm value, as displayed in
the Figure 6.

Figure 6 Genetic representation

3.3 Genetic and Memetic Algorithm
Since the algorithms used in this experiment, GA and MA,

have very similar processes, all the identical processes will use
the same functions and parameters. MA is roughly a concept of

hybrid GA with individual improvement. The pseudo-code*
below shows both algorithms. These algorithms are adjusted for
this automated music composition problem.

GA Pseudo-code: MA Pseudo-code:
Population P = initialize();
while(!stopping_conditions)

{
 offspring O = crossover(P);
 mutate(O);
 evaluate(P,O)

 P = regenerateP (P,O);
}

Population P = initialize();
while(!stopping_conditions)

{
local_search(P);
 offspring O = crossover(P);
 mutate(O);
 evaluate(P,O)

 P = regenerate (P,O);
}

The system first creates P population randomly then starts our

development processes until the stopping criterion is met.
Iteration counter is the only one parameter for our stopping
condition. Only MA includes individual improvement process,
called local search. In this specific problem, this function does
not really do local search but try to improve individuals. The
common processes of both GA and MA are crossover, mutation,
and generation reproduction. Simple crossover is done to create
offspring O. The system will firstly pair parents randomly and
choose one point to fix only one point for cross over operation.
Crossover rate for this experiment is 100 percent. Mutation is
done by choosing mutate points randomly on each offspring O
based on the mutation rate. All offspring are mutated. Each child
will be adjusted one note pitch and one note duration once for
mutation randomly. After crossover and mutation process both
population P and offspring O fitness will be calculated then each
the offspring will be compared with its parents. If an offspring
gets the better fitness value the offspring will be chosen for the
next generation. Unless a parent has more fitness value, the
parent will continue going on the next generation. Before
regeneration, each individual has to be evaluated, then chosen to
survive on the new generation.

3.4 Fitness Function
Songs from both GA and MA is evaluated by a fitness

function. This function is from extracting major characteristic of
a good music piece from music theory and also from the
evaluation of the listener. Fitness function of this system is
described as the equation below

Fitness =
{(W1×InScaleScore)+(W2×LengthScore)+
(W3×IntervalScore)+(W4×TonicScore)+

(W5×ListenerScore)}

Fitness value is calculated from five factors and every score is

multiplied by its weight (W1-W5). Each score maxima is 1.
InScaleScore is computed from the ratio of the number of in
scale notes and the number of all notes on the chromosome.
LengthScore is the value of the duration the exceeds 32 beats or
be less than 32 beats divided by 4, since 32 is equal to eight bars
in 4/4 and 4 is the largest possible difference. IntervalScore is

The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

- 4 -

calculated from the amount of intervals that less than 5th divided
by the number of all interval found in the music piece.
TonicScore only checks the first and the last note whether they
match the tonic or not. Each tonic note costs half the score,
which is totally 1 from both notes. ListenerScore is ranged from
1 to 5 based on the evaluator. The listener could be a general
listener or a music expert who grades the song. The raw score
from listenner is divided by 5 to be easier to calculate the total
fitness.

3.5 Local Search
There are five functions to improve individually. Each

function is decided to be used or not depends on randomly
choosing based on the probability parameters except the last
function adjustNoteToSequence(). We also apply probability
base random but in different way.

Pseudo-code for local search:

public void doLocalSearch()
 {
 if(getABoolean(ProbInScale)) {adjustNoteToScale();}
 if(getABoolean(ProbMotif)) {createMotif();}
 if(getABoolean(ProbStartEnd)) {setStartEnd();}
 if(getABoolean(ProbDuration)) {adjustDuration();}
 adjustNoteToSequence();
 }

getABoolean(Double) function coins a Boolean value

randomly, depending on a double-type input. This value controls
the weight of the probability for calling function. Once
adjustNoteToScale() function is called, all notes in a
chromosome will correct out of scale note to the scale. For
example to compose a C Major song, the note C# does not
belong to C Major scale. C# will be raised to be D or lowered to
be C depending on the random Boolean value. While
createMotif() function randomly chooses one bar in the
chromosome except the last bar. And copy all notes in that
chosen bar and paste them next to the chosen bar. There are two
main methods of creating music motif that are also chosen
randomly. First, only copy and paste without changing any value.
Second, shift all notes in the copied bar up or down.
setStartEnd() is a function that set the first and the last note of a
chromosome to be the tonic of the key. For instance, the note C
is the tonic of both C major and C minor scale. adjustDuration()
function changes the too long or too short chromosome duration.
For the song shorter than eight bars, the program will search for
one smallest duration note from left to right and adjust its
duration value by two times. For the music that longer than eight
bars, the program will search for the longest note instead and
lessen the duration by half. This function will adjust only one
note when it is called. In every iteration, the function named
adjustNoteToSequence() is used, unlike the previous functions.
In the function it will look at each note from left to right and it
may adjust that specific note or just leave the note the same
depends on the weighted random value. If a note has to be
changed because of its random value, it will be set either closer

to the previous note or closer to the next note. The new note pitch
will be not further than 3 pitches compare to one of its neighbors.

4. Result
After running the algorithms for 15 iterations, we got a

number of developed music. Figure 7 shows a part of the result
from running GA and Figure 8 shows a section of music
composited from MA.

Figure 7 A part of the result music piece using GA

Figure 8 A part of the result music piece from MA

To compare the performance of each algorithm, score from

user evaluation and the generated music scores of the first and
the last generation is shown in the table below.

Composited
Music

Genetic Algorithm Memetic Algorithm
Average

Score
Best

Score
Average

Score
Best

Score
Random 1 1 1 1
Result 1.2 2 1.8 3

For MA, the listener mainly scored 1 for the first generation

but the 10th generation music got about 2-3 point out of 5. MA
shows that it is also an effective method to develop music
composition system, compared to GA.

5. Conclusion
After this experiment, we found that MA might fit automated

music composition problem more than GA since it performs
better and have the better score form the listener. The local
search is the characteristic of MA, compared to GA and this is
useful for the problem that we know a little bit how to improve it
individually. In music composition, we already derived music
theory, which has been accepted worldwide. We know that when
we apply music theory to the composition we will get the better
result and it is not difficult to create rules from the theory.
Conversely, we cannot totally believe the music theory since it is
written very long time ago and has not been developed lately.
Listener evaluation can help us finding the fault of the theory if
the fitness score created from the music theory is far different
from the listener score. Moreover, the convergence of MA is
quite fast. We can get the better song within a few iterations that
could reflect that local search might help the algorithm converge
faster

5.1 Future Work
The local search function and the fitness function still can be

further develop because there are many rules and theory of music
that can help us improve this automated composition.

To make the evaluation easier for the listener, listener
evaluation model could be created to help the listener not to

The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

- 5 -

listen to every song in the every generation, which is time
consuming and might bore the listener and could affect our
listener score.

Acknowledgments
This work is also advised by Dr. Boomserm Kaewkamnerdpong
and Assoc. Prof. Tiranee Achalakul. King Mongkut University of
Technology, Thailand.

References
[Chiu 2006] Shih-Chuan Chiu, Man-Kwan Shan, Computer

Music Composition Based on Discovered Music Patterns, In
Proceeding of IEEE International Conference on Systems,
Man and Cybernetics, SMC '06, vol.5, no., pp.4401,4406, 8-
11 Oct. 2 006, Taipei, IEEE, 2006

[Dawkins 1976] Richard Dawkins, The Selfish Gene, Oxford
Press, 1976

[Maeda 2010] Maeda Y., Kajihara Y., Rhythm generation
method for automatic musical composition using genetic
algorithm, In Proceedings of IEEE International Conference
on Fuzzy Systems (FUZZ), 2010, vol., no., pp.1,7, 18-23
July 2010, IEEE, 2010

 [Marques 2000] Marques M., Oliveira V., Vieira S., Rosa A.C.,
Music composition using genetic evolutionary algorithms. In
Proceedings of the 2000 Congress on Evolutionary
Computation, 2000, vol.1, no., pp.714,719 vol.1, IEEE, 2000

[Miller 2005] Michael Miller, The Complete Idiot’s Guide to
Music Theory, USA, Alpha Press, 2005

 [Moscato 1989] Pablo Moscato, On evolution, search,
optimization, genetic algorithms and martial arts: Towards
memetic algorithms, Tech. Rep. Caltech Concurrent
Computation Program Report. 826, USA, California Institute
of Technology, Pasadena, 1989

[Sheikholharam 2008] Sheikholharam P., Teshnehlab M., Music
Composition Using Combination of Genetic Algorithms and
Recurrent Neural Networks, Eighth International Conference
on Hybrid Intelligent Systems, 2008. HIS '08, vol., no.,
pp.350,355, 10-12 Sept. 2008, IEEE, 2008

[Unehara 2001] Unehara M., Onisawa T., Composition of music
using human evaluation, In Proceedings of The 10th IEEE
International Conference on Fuzzy Systems, 2001, vol.3,
pp.1203, 1206, IEEE, 2001

 [Wells 2011] Derek Wells, Hala ElAarag, A novel approach for
automated music composition using memetic algorithm in
ACM SE 11, Mar 24-16 2011, GA, USA, ACM, 2011

