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Automatic music composition has been a challenging, interesting, and yet still much to be explored task primarily because 

it is hard to distinguish which song is good or bad which significantly impedes the automated composition process. Despite 
this difficulty, automated music composition would benefit many groups of people who ought to use a piece of their own 
music, as composed for them by an AI system with compositional intelligence, without someone else’s copyright for some 
purpose such as a music piece for a commercial, or a song played in the background of a presentation. Our composition 
system composes eight-bar tracks, based on western music theory and listener evaluation. We present here the use of 
memetic algorithm, comparing to using the conventional genetic algorithm. The same representation and evaluation for both 
techniques are used because of the similarity of these two algorithms. The main difference of memetic algorithm with genetic 
algorithm is the local search process. Both algorithms are implemented separately to spot the difference between the results 
then we evaluated the algorithms. When the outcomes are compared, we found that the use of memetic algorithm performs 
better in terms of quality of musical piece and convergence speed. 

 

1. Introduction 
Music composition is normally done by music experts and 

music composers. They use both feeling and musical knowledge 
to come up with good pieces of music. In some cases, we might 
want to get a generated music without the need of hiring a 
composer, and achieving this kind of intelligence has become 
one of the computer scientists’ dreams. Automatic music 
composition would benefit many groups of people who ought to 
use a piece of their own music composed for them by an AI 
system with compositional intelligence such that it is not under 
someone else’s copyright, for a purpose such as for a commercial 
or to be played in the background in a presentation. 

Automated music composition problem is challenging and 
interesting for computer scientists. Unlike neither scientific nor 
mathematical problems, the beauty of music is difficult to judge 
since it is art and subjective. There is no way that many people 
will judge a song in the same way. Everything is about how an 
individual feels. These are the reason why it challenges us to 
work on this project. We have  tried to automate the composition 
of a completely new song from scratch, but then the generated 
music should not merely consist of  a set of random notes—it has 
to incorporate a certain degree of creativity based on the music 
theory. In real life, a person who wants to try writing a piece of 
musical melody either has to understand music theory or to be 
really talented.  

Genetic algorithm (GA) and memetic algorithm (MA) were 
chosen in order to solve this problem and to be compared against 
each other. MA includes a local search process, which might be 
helpful to solve problems that we already know how to improve. 
To illustrate, we basically know how to improvise a song by 
applying music theory. Then we create a set of rules extracted 
from music theory that will become our MA local search 

function. Without any idea of how to improve an individual, the 
local search might not be useful.  

2. Background 

2.1 Music Background 
This section outlines fundamental western music knowledge 

that is needed when automating composition using artificial 
intelligence techniques. To compose a piece of music, we need to 
arrange symbols including notes and rests. In this research 
project, only western music theory is used for international 
standardization.   
 
2.1.1 Note and Rest 

A note is a fundamental and important part of music. It has 
two main characteristics: pitch and duration. Music pitch often 
refers to the frequency of the sound. In science, pitch means 
higher frequency and lower frequency. Note value or note 
duration is a value showing how long a note is meant to be 
played. Notes are normally written on “staffs” or “staves”, each 
of which consists of a set of five horizontal lines. In western 
music theory, songs are written based on twelve notes including 
C, C#/Db, D, D#/Eb, E, F, F#/Gb, G, G#/Ab, A, A#/Bb, and B. 
In many countries especially in Latin America, Eastern Europe, 
and Southern Europe, another system of naming notes is used, 
which are Do for C, Re for D, Mi for E, Fa for F, Sol for G, La 
for A, and Ti or Si for B. There are 5 notes that have two names 
that are represented as black keys on a keyboard. 

Apart from the pitch, another important part of a note is the 
note value and note duration. Note duration, as shown in the 
figure 1, is about how long the note will be played, represented 
by the shape of the note symbol. One whole note has a duration 
equals to two half notes. Half note duration is equal to two-
quarter notes. An eights notes duration equals two sixteenth notes. 
There are more types of note durations but these five are the most 
used ones. Contact: Mondheera Pituxcoosuvarn, The Institute of Scientific 

and Industrial Research, Osaka University, 8-1 Mihogaoka, 
Ibaraki, Osaka, 567-0047, Japan, Tel: +81-6-6879-8426, 
Fax: +81-6-6879-8428, mondheera@ai.sanken.osaka-u.ac.jp 

2C4-IOS-3c-4 



The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013 

- 2 - 

 

 

Figure 1 Note duration chart [Miller 2005] 

Corresponding to the notes, there is another set of symbols, 
leaving some part of the song silent, called “rest”. Those rests are 
displayed below. However, the exact duration in terms of actual 
time of the notes and the rests is defined by the tempo.  

 

 
Figure 2 Notes and rests [Miller 2005] 

 

2.1.2 Interval 
Interval is the distance between 2 notes. The smallest interval 

for Western music is a semitone or a half step. There are a 
number of types of interval depends on the size and the quality. 
Interval size is about the space between those 2 notes. For 
example, there are 5 notes from C to G, so this interval is “fifth” 
or “5th Interval”. The other name and size is shown in the Figure 
3. 

 

 
Figure 3 Basic intervals, starting at C [Miller 2005]  

 
Regarding the quality of an interval, there are various types 

depending on how well those two notes go together. The biggest 
categories are “perfect interval” and “non-perfect interval”. The 
perfect intervals are unison, fourth, fifth, and octave. When a 
perfect interval is lowered by a semitone, it comes to be 
“diminished”. But if it is raised by a semitone, it is called 
“augmented”. For non-perfect intervals, there are second, third, 
sixth, and seventh which can be either major or minor. Major 
intervals are the natural state in major scales. If a major interval 
is raised by a semitone, it becomes “augmented”, but if it is 
lowered by a semitone, it changes into minor. On the contrary, if 
a minor is raised by a semitone it turns into “major” but if it is 
lowered by a semitone it becomes “diminished”. 

 
2.1.3 Scale  

A scale is composed arbitrary of a series of notes. Nowadays 
mainly two scales that are still used to compose a song generally: 
major and minor scales. Every scale starts from a note and end at 
the same note in one-higher octave. There are twelve notes in one 
octave but there are only eight notes in a scale. To construct a 
scale, specific intervals are used. In use, composers normally use 
note in a specific scale to write a piece of music. 

In a major scale, C Major contains C, D, E, F, G, A, B, C. The 
first note in the scale is called “Tonic” and the intervals between 
each notes are 2, 2, 1, 2, 2, 2, 1 semitone respectively.  

 

 
Figure 4 An Example of major scales [Miller 2005] 

 
Minor mode is more complicated than major mode. There are 

three types of minor scale: “natural minor”, “harmonic minor”, 
and “melodic minor”. As with the major scale, interval plays the 
only role here. A natural scale is composed of a tonic and the 
note with 2, 1, 2, 2, 1, 2, 2 semitones in order. The harmonic 
minor scale is almost the same as the natural minor. The small 
difference is the seventh note of this scale is raised by a semitone, 
which makes the interval between the sixth and the seventh notes 
become three semitones. It sometimes sounds abnormal and is 
difficult to sing. As a consequence, the melodic minor scale 
adjusted the too big interval, so the intervals turn into 2, 1, 2, 2, 2, 
2, 1 semitones.   

2.1.4 Motif 
Motif is found in many parts of the composition. It is a very 

short sentence of rhythm or melody and it is repeated many times. 
Pitches can be adjusted but it will keep the rhythm as its 
characteristic. A great example of using motif is Beethoven’s 
Symphony No.5. 

 

 
Figure 5 The motif from Beethoven’s Symphony No.5 

2.2 Related Works 
Recently, there have been several method presented for both 

automatic music composition and automatic improvisation. GA 
and other hybrid methods of GA are used for music composition 
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by many researchers. [Marques 2000] [Unehara 2001] 
[Sheikholharam 2008] [Maeda 2010]  

By the way, other techniques are able to solve this problem. 
Several researches are done using various methods, especially AI 
algorithms. One of those is Chiu[2006]’s work that presented a 
composition approach by discover the patterns and rules in 
existing songs then automatically create a new piece which is 
similar to the original songs.  

MA is a fairly new population based algorithm and there exists 
not so many works using this algorithm. This algorithm could be 
seen as a hybrid or developed method of GA. The term “meme” 
was coined by Dawkins[1976], an author, ethologist and 
evolutionary biologist. This term refers to a unit of cultural 
transmission similarly to gene. As a result, “memetics” is 
corresponding to “genetics”. The first person that applied meme 
concept to problem solving is Moscato[1989]. His algorithm is 
named memetic algorithm (MA). Memetic algorithm was applied 
to automated music composition without human evaluation. 
[Wells 2011] Their work included a few rules from music theory, 
used for fitness calculation and local search.  

3. Automated Music Composition System 
This project applies GA and MA as main method for music 

composition. There is evaluation by human included in order to 
estimate the quality of the composed piece since evaluation using 
only few rules from music theory is not enough to judge the 
results. Moreover music theory is just a concept we cannot make 
sure that if we follow all the theory we will get a good song. For 
these reason, human is needed to evaluate the songs 

3.1 Composition Boundary 
Music system used in this work is based on western music 

theory with twelve notes, A to G#. To reduce the complexity, 
only major scale is employed in the composition. The shortest 
duration of note is sixteenth and the longest duration of note is 
the whole. The same as most simple songs, time signature 4/4 is 
applied and the length of the composition is set to eight bars. The 
output of the composition is music melody in midi file format. 

3.2 Genetic Representation 
Our representation is based on GA. In one generation there are 

a number of chromosome or population. Each chromosome, 
representing one song, contains a number of notes. Each note has 
two main characteristics: pitch and rhythm value, as displayed in 
the Figure 6. 

 
Figure 6 Genetic representation 

3.3 Genetic and Memetic Algorithm 
Since the algorithms used in this experiment, GA and MA, 

have very similar processes, all the identical processes will use 
the same functions and parameters. MA is roughly a concept of 

hybrid GA with individual improvement. The pseudo-code* 
below shows both algorithms. These algorithms are adjusted for 
this automated music composition problem. 

 
GA Pseudo-code: MA Pseudo-code: 
Population P = initialize();  
while(!stopping_conditions)  

{   
 offspring O = crossover(P);  
 mutate(O); 
 evaluate(P,O) 

 P = regenerateP (P,O);  
}  

 

Population P = initialize();  
while(!stopping_conditions)  

{  
local_search(P);  
 offspring O = crossover(P);  
 mutate(O); 
 evaluate(P,O) 

 P = regenerate (P,O);  
}  

 
The system first creates P population randomly then starts our 

development processes until the stopping criterion is met. 
Iteration counter is the only one parameter for our stopping 
condition. Only MA includes individual improvement process, 
called local search. In this specific problem, this function does 
not really do local search but try to improve individuals. The 
common processes of both GA and MA are crossover, mutation, 
and generation reproduction. Simple crossover is done to create 
offspring O. The system will firstly pair parents randomly and 
choose one point to fix only one point for cross over operation. 
Crossover rate for this experiment is 100 percent. Mutation is 
done by choosing mutate points randomly on each offspring O 
based on the mutation rate. All offspring are mutated. Each child 
will be adjusted one note pitch and one note duration once for 
mutation randomly. After crossover and mutation process both 
population P and offspring O fitness will be calculated then each 
the offspring will be compared with its parents. If an offspring 
gets the better fitness value the offspring will be chosen for the 
next generation. Unless a parent has more fitness value, the 
parent will continue going on the next generation. Before 
regeneration, each individual has to be evaluated, then chosen to 
survive on the new generation. 

3.4 Fitness Function 
Songs from both GA and MA is evaluated by a fitness 

function. This function is from extracting major characteristic of 
a good music piece from music theory and also from the 
evaluation of the listener. Fitness function of this system is 
described as the equation below 

 

Fitness = 
{(W1×InScaleScore)+(W2×LengthScore)+ 
(W3×IntervalScore)+(W4×TonicScore)+ 

(W5×ListenerScore)} 

 
Fitness value is calculated from five factors and every score is 

multiplied by its weight (W1-W5). Each score maxima is 1. 
InScaleScore is computed from the ratio of the number of in 
scale notes and the number of all notes on the chromosome.  
LengthScore is the value of the duration the exceeds 32 beats or 
be less than 32 beats divided by 4, since 32 is equal to eight bars 
in 4/4 and 4 is the largest possible difference. IntervalScore is 
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calculated from the amount of intervals that less than 5th divided 
by the number of all interval found in the music piece.  
TonicScore only checks the first and the last note whether they 
match the tonic or not. Each tonic note costs half the score, 
which is totally 1 from both notes. ListenerScore is ranged from 
1 to 5 based on the evaluator. The listener could be a general 
listener or a music expert who grades the song. The raw score 
from listenner is divided by 5 to be easier to calculate the total 
fitness. 

3.5 Local Search 
There are five functions to improve individually. Each 

function is decided to be used or not depends on randomly 
choosing based on the probability parameters except the last 
function adjustNoteToSequence(). We also apply probability 
base random but in different way. 

  
Pseudo-code for local search: 

public void doLocalSearch() 
 { 
 if(getABoolean(ProbInScale))   {adjustNoteToScale();} 
 if(getABoolean(ProbMotif))      {createMotif();} 
 if(getABoolean(ProbStartEnd)) {setStartEnd();} 
 if(getABoolean(ProbDuration)) {adjustDuration();} 
 adjustNoteToSequence(); 
 } 

 
getABoolean(Double) function coins a Boolean value 

randomly, depending on a double-type input. This value controls 
the weight of the probability for calling function. Once 
adjustNoteToScale() function is called, all notes in a 
chromosome will correct out of scale note to the scale. For 
example to compose a C Major song, the note C# does not 
belong to C Major scale. C# will be raised to be D or lowered to 
be C depending on the random Boolean value. While 
createMotif() function randomly chooses one bar in the 
chromosome except the last bar. And copy all notes in that 
chosen bar and paste them next to the chosen bar. There are two 
main methods of creating music motif that are also chosen 
randomly. First, only copy and paste without changing any value. 
Second, shift all notes in the copied bar up or down.  
setStartEnd() is a function that set the first and the last note of a 
chromosome to be the tonic of the key. For instance, the note C 
is the tonic of both C major and C minor scale. adjustDuration() 
function changes the too long or too short chromosome duration. 
For the song shorter than eight bars, the program will search for 
one smallest duration note from left to right and adjust its 
duration value by two times. For the music that longer than eight 
bars, the program will search for the longest note instead and 
lessen the duration by half. This function will adjust only one 
note when it is called. In every iteration, the function named 
adjustNoteToSequence() is used, unlike the previous functions. 
In the function it will look at each note from left to right and it 
may adjust that specific note or just leave the note the same 
depends on the weighted random value. If a note has to be 
changed because of its random value, it will be set either closer 

to the previous note or closer to the next note. The new note pitch 
will be not further than 3 pitches compare to one of its neighbors. 

4. Result  
After running the algorithms for 15 iterations, we got a 

number of developed music. Figure 7 shows a part of the result 
from running GA and Figure 8 shows a section of music 
composited from MA. 

 
Figure 7 A part of the result music piece using GA 

 
Figure 8 A part of the result music piece from MA 

 
To compare the performance of each algorithm, score from 

user evaluation and the generated music scores of the first and 
the last generation is shown in the table below. 

 

Composited 
Music 

Genetic Algorithm Memetic Algorithm 
Average 

Score 
Best 

Score 
Average 

Score 
Best 

Score 
Random 1 1 1 1 
Result 1.2 2 1.8 3 

 
For MA, the listener mainly scored 1 for the first generation 

but the 10th generation music got about 2-3 point out of 5. MA 
shows that it is also an effective method to develop music 
composition system, compared to GA.  

5. Conclusion 
After this experiment, we found that MA might fit automated 

music composition problem more than GA since it performs 
better and have the better score form the listener. The local 
search is the characteristic of MA, compared to GA and this is 
useful for the problem that we know a little bit how to improve it 
individually. In music composition, we already derived music 
theory, which has been accepted worldwide. We know that when 
we apply music theory to the composition we will get the better 
result and it is not difficult to create rules from the theory. 
Conversely, we cannot totally believe the music theory since it is 
written very long time ago and has not been developed lately. 
Listener evaluation can help us finding the fault of the theory if 
the fitness score created from the music theory is far different 
from the listener score. Moreover, the convergence of MA is 
quite fast. We can get the better song within a few iterations that 
could reflect that local search might help the algorithm converge 
faster  

5.1 Future Work 
The local search function and the fitness function still can be 

further develop because there are many rules and theory of music 
that can help us improve this automated composition.  

To make the evaluation easier for the listener, listener 
evaluation model could be created to help the listener not to 
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listen to every song in the every generation, which is time 
consuming and might bore the listener and could affect our 
listener score. 
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