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Activity recognition is an important task in the researches of ambient intelligence and smart environment. In real smart 
environments, detected signals of monitoring living space come from heterogeneous sensors generally. The intelligent 
awareness system can automatically provides the proper services to satisfy the requirements of users based on the 
recognized activity of users sensed by multi-sensor. The high accurate activity recognition is the basis of supporting high-
quality service. However, the streaming data generated by multi-sensor are real time, continuous and variable. It is difficult 
for systems to archive high precise activity recognition from data streams of multiple sensors. The previous models on 
recognizing sequential data includes Hidden Markov model and Conditional Random Fields. This paper proposed a new 
activity recognition model for processing sequential data stream based on mining distinguishing sequential patterns. The 
general sequential patterns are on-line generated and counted first from the data streams and the minimal distinguishing 
sequential patterns are mined. Then, efficient and effective probabilistic recognizing methods and algorithms are developed 
for activity recognition. Two datasets, WSU and Kasteren, were used to test the proposed methods. The experimental 
results show that the proposed models have effective recognition rates in both of the activity level and the time slides level. 
The proposed model also provides a strong on-line recognition paradigm on multi-sensor data stream. 

 

1. Introduction 

An integration of technologies in pervasive computing and 
machine learning initiates the development of smart environment, 
such as aware home, smart space, and ambient intelligence. A 
smart environment is generally equipped with variant types of 
sensors in the space to detect the environmental status and 
recognize users’ activities for supporting proper services to users. 
The problem of recognizing activities accurately from multiple 
sensors is one of important tasks in the applications of smart 
environment. As the success of a smart environment relies on the 
satisfaction of users’ requirements, recognizing environmental 
status to fit users’ intention is the critical technique for an 
intelligent awareness system. High accurate activity recognition 
schemes can increase serving quality and reliability of the system. 
A high-quality service system is the main objective of a smart 
environment.  

For detecting events in a smart environment, different sensors 
are usually installed around the target space. The sensing data from 
multiple sensors generate a collection of multi-dimensional data 
streams. Activity recognition in a smart environment can be 
treated as the sequence classification problem on multi-sensor data 
streams within a specific period of time. There are several 
challenges for activity recognition in multi-sensor data streams. 
The first obstacle is the noise of operating sensors in the 
environment. The signal interference often occurs among sensors 
due to abnormal awareness or user’s unintentional behavior. The 
second difficulty is that it is hard to separate the sensor data stream 

into activity fragments. Because the sensing data are received on-
line and real-time, it is almost impossible to separate the activity 
precisely. The third problem is that the data sequences have lots of 
variation between long activities and short activities. Since the 
streaming data generated by multiple sensors are real-time, on-line 
and noisy, it is difficult for researchers to find a general model to 
solve such a problem. 

Many activity recognition methods were proposed in the last 
decade. Most activity recognition schemes are based on Hidden 
Markov Model (HMM) and Conditional Random Fields (CRF), 
such as [Hsu 2010], [Kasteren 2008], [Singla 2010] and 
[Yakhnenko 2005]. Since the traditional sequential classification 
models using maximum likelihood to find the best parameters, the 
previous activity recognition methods performed well in off-line 
circumstance of activity labeling and training. However, the 
training time is getting growing while the streaming data is 
increasing. As the identification task are employed in on-line 
multi-sensor data streams, classification models may not be able  
to be retrained completely in time for catching up the last 
formulating model.  

In this paper, we propose a new activity recognition model for 
processing sequential data stream based on mining distinguishing 
sequential patterns. The minimal distinguishing subsequence 
mining approach [Ji 2005] is modified and applied to find minimal 
distinguishing sequential patterns. After discovering the minimal 
distinguishing patterns, the probabilistic analysis and the sequence 
classification algorithms are developed to recognize activities from 
a sequence of multi-sensor data stream efficiently and effectively. 
The evaluation and experiments are tested on two well known data 
sets, WSU [WSU 2010] and Kasteren [Kasteren 2008]. The 
experimental results show that the proposed schemes can improve 
the effectiveness both of the time slice accuracy and class accuracy 
in raw data. Furthermore, it is also effective while the raw data are 
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preprocessed by the ‘change point’ sampling method or the ‘last’ 
filtering techniques. The results of comparing with HMM are 
drawn and the properties of the proposed sequence classification 
method are discussed. 

The rest of this paper is organized as follows. In Section 2, the 
related researches on sequence classification techniques for 
activity recognition are discussed. The new method based on 
distinguishing pattern and the proposed activity classification 
algorithms are presented in Section 3. Section 4 describes the 
evaluation of the proposed new approaches and discusses the 
experimental results. Concluding remarks and further work are 
made in the final section. 

2. Related Work 

Sequence classification is one of the primitive techniques of 
recognizing activity in streaming data. Generally, the sequence 
classification methods can be divided into three categories: model 
based classification, feature based classification and distance based 
classification [Xing 2010]. We will give a brief review on 
sequence classification methods of the three categories in the 
following subsections. 

2.1 Model based sequence classification 

The model based sequence classification method assumes that 
sequences in a class are generated by an underlying generative 
probabilistic model. The most common models include Naïve 
Bayes classifier, Markov Model (MM), Hidden Markov Model 
(HMM), and Conditional Random Fields (CRF). The model is 
usually defined on an assumption of probability distribution 
described by a set of parameters. The objective of training phase is 
to learn the optimized parameters of the model. Then, the 
classification phase can assign a unknown sequence to the class 
with highest likelihood or probability. 

Naïve Bayes is usually applied to the application which the 
sequences are independent of each other, e.g. text classification 
[Lewis 1998]. The MM and the HMM are generally used to model 
the classification tasks having dependence among elements in their 
sequences. For example, Yakhnenko et. al. apply a K-order 
Markov Model to classify protein and text sequences [Yakhnenko 
2005]. Kasteren et. al. apply Hidden Markov Model to recognize 
activities in smart environment [Kasteren 2008]. 

2.2 Feature based sequence classification 

In the feature based classification, a sequence datum is first 
transformed into a multi-dimensional feature vector. Then, 
conventional classification methods, like decision trees, neural 
network, SVM, etc., are applied to accomplish the training and 
classifying tasks. As a consequence of applying conventional 
classification methods, the extracting and selecting effective 
features from sequences become the most important task while 
classifying sequences.  

Several feature extraction methods were proposed to find 
meaningful patterns from data sequences. Chuzhanova et. al. apply 
k-grams to generate all possible subsequence in training set, and 
apply Gamma test to select more informative feature set 
[Chuzhanova 1988]. Lest et. al. propose an Apriori based feature 
mining method to find distinguished feature patterns [Lesh 1999]. 
Each selected features must be short subsequences which satisfy 

the following rules: 1) It is frequent. 2) It should be distinctive at 
least one class. 3) It cannot contain redundant features. After 
features being selected, Winnow [Littlestone 1988] and Naïve 
Bayes classifier are applied to classify sequences. Ji et. al. 
proposed an effective algorithm to mine minimal distinguishing 
subsequences with maximal gap constraint [Ji 2005]. The found 
subsequence patterns are frequent in one class and infrequent in 
other classes. 

2.3 Distance based sequence classification 

The distance based classification methods must define a 
distance function to measures the similarity between two 
sequences. After obtaining the difference of similarity between a 
pair of sequences, some distance based classifiers, like k nearest 
neighbor classifier (KNN) and SVM with local alignment kernel, 
are used to classify sequence data. 

The measure of distance function is the critical part for the 
distance based sequence classification. For classifying time series, 
Euclidean distance and the dynamic time warping distance (DTW) 
[Keogh 2000] are adopted widely in various applications. For 
symbolic sequences, the alignment based distance measures are 
usually adopted [Kaján 2006]. Many variants based on the 
alignment method are also developed, such as global alignment, 
local alignment, and region alignment. 

3. The Proposed Methods 

The solution of activity recognition on data streams proposed in 
this section is a kind of feature based classification method. First, 
we will give the problem precisely in formal notation. Then, we 
depict the approach of mining the minimal distinguishing patterns 
which are frequent in the class but infrequent in other classes. 
Finally, the probabilistic based algorithms are designed to separate 
the data sequence and classify the activity. 

3.1 Notation 

The activity recognition in multi-sensor environment can be 
formalized as follows. Let si be a multi-sensor data vector and S = 
s1s2…st is a multi-sensor streaming data. The notation is siS. The 
st is the last coming data. For a finite class set of activities C={c1, 
c2, …, cK}, ck is the class label of kth activity, 1  k  K. The 
labeled streaming data are represented as (si, ck), where 1  i  t 
and 1  k  K. A subsequence containing si having the same 
activity label in its neighbor will partition the streaming data into 
activity subsequence denoted as (Sl, ck). The Sl be a subsequence 
labeled by activity ck, and |Sl| is the length of the subsequence Sl.  

The goal of activity recognition on the data streams is to 
construct an effective recognizer to classify an on-line multi-
sensor sequence based on the set of labeled training activity 
subsequence (Sl, ck), 1  l  n and 1  k  K, where n is the number 
of sequence data in training set. Thus, the problem of activity 
recognition on the data streams is not only classifying the 
sequence accurately but also partitioning the streaming sequence 
effectively. 

3.2 Mining minimal distinguishing patterns 

To find the features of recognizing activities, we describe the 
proposed mining approach based on [Ji 2005] to get minimal 
distinguishing patterns in this subsection.  
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The distinguishing patterns found in [Ji 2005] have two 
characteristics. The first is that the distinguishing patterns are 
subsequences allowing gaps inside the sequence. The second is the 
distinguishing patterns are in unlimited length. Since the length of 
distinguish patterns used in this task generally do not need too long, 
we simplify the algorithm to find the patterns we need.  

First, the minimal distinguishing pattern is defined as follows: A 
sequence pattern pat is called distinguishing pattern if pat can 
identify unique activity among distinct activities. Further, while 
none of the subsequence in the pattern pat can identify the same 
activity, the pat is one of the minimal distinguishing patterns. Next, 
a long minimal distinguishing pattern may be too specific for 
classifiers to identify the correct activity. Therefore, the maximal 
prefix length (MPL) are defined and specified to restrict the size of 
a distinguish pattern. 

 Let T be the training set of activity sequences (Sl, ck), 1  l  n 
and 1  k  K. S is the set of all possible multi-sensor data. We 
also define two sets, MDS and IS, to be the set of minimal 
distinguishing patterns and the set of indistinguishable patterns, 
respectively. The minimal distinguishing pattern mining algorithm 
is depicted in Figure 1. The initial values of MDS = {}, IS = {}, 
and pat is empty string. The length of pat is increased one by one. 
If the current pat can not be one of the distinguishing patterns, the 
pat will grow one more multi-sensor data until the length of pat is 
larger than MPL. 

 

Algorithm Find minimal distinguishing patterns 

Input:   T: training set 
pat: sequence pattern 
S: the all possible multi-sensor data 

Output:  MDS: the set of minimal distinguishing patterns 
       IS: the set of indistinguishable patterns 
Min_distinguish_pattern(pat)  
{ 

for si  S 
    {    

 pat = concatenate(si, pat); 
         if  (pat is a distinguishing pattern in T) 
              MDS = MDS∪pat; 
         else 
         {   IS = IS∪pat; 
              if  length(pat) < MPL 
                  Min_distinguish_pattern(pat); 
         } 
} 

Figure 1. The minimal distinguishing patterns mining algorithm. 

3.3 Sequence classification 

After mining minimal distinguishing patterns, a probabilistic 
sequence classification scheme is developed by adopting the set 
MDS to classify the activity class for each on-line generated multi-
sensor streaming data si. We introduce the proposed sequence 
classification method in the following. 

Let Dk  MDS be the sets of minimal distinguishing patterns 
being able to recognize the kth activity ck for 1  k  K. Assume 

that S = s1s2…si be the multi-sensor data stream and si is the last 
signal we received. The procedure of the sequence classification 
contains three main stages.  

The first stage uses the sets of minimal distinguishing patterns 
DkMDS to identify the activity. In this stage, the sequence will be 
looked forward until the length of pattern exceeding MPL if the si 
cannot decide the activity exactly. A delaying policy is also 
employed in this stage. While the forward sequence exceeds MPL 
and the activity is still not able to be recognizes by minimal 
distinguishing pattern. The current signal data si will not be 
assigned the activity label instantly. The latent identification is 
allowed at this time if the number of undecided latent data is less 
than the specified length of delay.  

Once any activity in sequence cannot be recognized exactly in 
the first stage, the probabilistic decision strategy would be further 
considered. For the unidentified stream data, the second stage of 
the procedure handles the idle case in which the values of si, 
si+1, … are the same and keep repeating. While the stream data 
keep the same data, it means that the user is idle. At this moment, 
the identified activity label at the last decision will be assigned to 
all the present undecided stream data.  

In the third stage, we focus on using probabilistic estimation 
functions to recognize the activity and assign to the undecided 
stream data. Since the minimal distinguishing pattern in the first 
stage cannot identify the activity, this stage must take IS, the set of 
indistinguishable patterns, to solve this problem. Before 
introducing the probabilistic estimation functions, some notations 
are first defined as follows.  

Let pj  IS be the indistinguishable patterns obtained from the 
training set T and |IS| = m. We assume that xjk is the number of 
patterns pj occurring in the training set T with activity ck. For a 
stream data S, if st is the last unlabeled multi-sensor data, xl

jk is 
denoted as the number xjk whose pj matches the corresponding 
unlabelled stream data s(t-l-1) … s(t-1) st  of length l.  

Then, two different probabilistic estimation functions are 
introduced to compute the probability of each activity class, as 
follows: 
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The estimation function fp1 refers to the percentage of pattern pi 

in the activity class and weighting as the length of individual 
pattern. In addition to the above conditions, the estimation function 
fp2 considers the ratio of pattern pi appearing in the stream data 
with activity ck of the training set. After computing the estimation 
function of each activity, we assign the label of activity with 
maximum probability to all unlabeled stream data before si. The 
detailed sequence classification algorithm is shown in Figure 2.  
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Algorithm Sequence Classification  

Input: s[], MPL, Delay  
Output: The activity label of each s[]. 
{  sep = 0;  

pos = 1;  
un_pos = pos; 
d = Delay-1; 
for ( ; ; )  

{  Ck = Check_DisPattern(s[], sep, pos); 
while ( Ck == 0 and d > 0) 
{   pos = pos + 1; 

Ck = Check_DisPattern(s[], sep, pos);  
d = d -1; 

        } 
if (Ck ≠ 0) 
{  Label(Ck, un_pos, pos); 

d = Delay - 1; 
if (Ck ≠ Activity of s[un_pos-1])       // separate activity 

                sep = un_pos – 1;  
un_pos = pos + 1; 

        } 
else   //  Ck == 0  
{   Ck = Find_RepPattern(s[], un_pos); 

if (Ck == 0) 

    Ck = )}[],({maxarg k
k

csfp ; 

Label(Ck, un_pos, un_pos); 
if (Ck ≠ Activity of s[un_pos-1])      // separate activity 

                   sep = un_pos – 1; 
un_pos = un_pos + 1; 

} 
pos = pos + 1; 

} 
} 

 
Check_DisPattern(s[], sep, pos) 
{  

i = pos – sep – MPL + 1; 
  if  ( i < 0) 
      i = 0; 
for ( i; sep + i <= pos; i++) 

if  ( s[sep + i, pos] in Dk ) 
            return Activity k; 
       else  
            return 0; 

} 
 

Find_RepPattern(s[], sep, i) 
{ 

 if  ( (i –sep)≧MPL) and s[i – MPL+1, i] is unchanged) 
     return Activity k of s[i-1]; 
else 
     return 0; 

}  

Figure 2. The sequence classification algorithm. 

4. Experimental results 

The evaluation of the proposed methods is described in this 
section. The purpose of the experiments is to evaluate the 
effectiveness of the proposed methods and make a comparison 
with the results of Hidden Markov Model (HMM) in [Kasteren 
2008]. The testing task of activity recognition was done on two 
datasets, WSU dataset [WSU 2010] and Kasteren dataset (KD) 
[Kasteren 2008].  

A daily life dataset generally contains various activities. 
However, because the lengths of different activities have large 
disparity, the evaluation of the effectiveness should concern about 
the ratios both of the correcting prediction in time slice and 
activity. The experiments are evaluated by two measures: time 
slice accuracy and class accuracy. The time slice accuracy stands 
for the percentage of correctly classified streaming data of daily 
time slice. The class accuracy represents the average percentage of 
correctly classified time slices of each activity. The two measures 
are defined as follows:  
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where (predict(i) = true(i)) is a binary indicator given 1 when 

the predicting activity for streaming data si at time i is the same to 
the ground truth; otherwise, the value 0 is given. N is the total 
number of time slices. K is the number of activities. Nk is the total 
number of time slices with activity k. 
 WSU dataset 

The WSU dataset recorded the sensor data streams that 24 
volunteers are assigned to perform five activities in the smart 
environment where 41 sensors were installed. The data are 
collected for 13 days with the multiple digital sensors. The 
activities include making a phone call, washing hands, cooking, 
eating, cleaning, and others. The detailed information is shown in 
Table 1.  

The experimental results of the WSU dataset are shown in 
Table 2, Table 3, Table 4, and Table 5. The results in the four 
tables include time slice accuracy and class accuracy of the 
estimation functions fp1 and fp2, respectively. The experimental 
results show that the two methods achieve high time slice accuracy 
but lower class accuracy. 

Table 1. The activities in WSU dataset. 

Activities # of instances  % of time 
Others  97.47% 
Make a phone call 24 0.36% 
Wash hands 24 0.15% 
Cook 24 0.94% 
Eat 24 0.34% 
Clean 24 0.74% 
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Table 2. The time slice accuracy of WSU with fp1. 

timeslice Delay=1 Delay=2 Delay=3 Delay=4
MPL = 1 0.9912 0.9928 0.9927 0.9915 
MPL = 2 0.9912 0.9927 0.9927 0.9915 
MPL = 3 0.9913 0.9928 0.9928 0.9917 
MPL = 4 0.9913 0.9936 0.9946 0.9947 
MPL = 5 0.9913 0.9936 0.9946 0.9947 
MPL = 6 0.9913 0.9936 0.9946 0.9947 

Table 3. The class accuracy of WSU with fp1. 

class Delay=1 Delay=2 Delay=3 Delay=4
MPL = 1 0.6719 0.7273 0.7444 0.7151 
MPL = 2 0.6751 0.7201 0.7428 0.7218 
MPL = 3 0.6767 0.7223 0.7455 0.7259 
MPL = 4 0.6767 0.7224 0.7458 0.7265 
MPL = 5 0.6767 0.7224 0.7458 0.7265 
MPL = 6 0.6767 0.7224 0.7458 0.7265 

Table 4. The time slice accuracy of WSU with fp2. 

timeslice Delay=1 Delay=2 Delay=3 Delay=4
MPL = 1 0.9912 0.9928 0.9927 0.9915 
MPL = 2 0.9913 0.9928 0.9927 0.9916 
MPL = 3 0.9914 0.9928 0.9928 0.9918 
MPL = 4 0.9914 0.9936 0.9946 0.9947 
MPL = 5 0.9914 0.9936 0.9946 0.9947 
MPL = 6 0.9914 0.9936 0.9946 0.9947 

Table 5. The class accuracy of WSU with fp2 

class Delay=1 Delay=2 Delay=3 Delay=4
MPL = 1 0.6721 0.7279 0.7450 0.7157 
MPL = 2 0.6753 0.7208 0.7435 0.7224 
MPL = 3 0.6769 0.7229 0.7462 0.7266 
MPL = 4 0.6769 0.7230 0.7465 0.7271 
MPL = 5 0.6769 0.7230 0.7465 0.7271 
MPL = 6 0.6769 0.7230 0.7465 0.7271 

 
The two estimation functions gain almost the same time slice 

accuracy. The highest time slice accuracy appears at the case of 
MPL  4 and Delay = 4. In the part of class accuracy, we found 
that the results of the estimation function fp2 are generally better 
than the function fp1. The highest class accuracy appears at the 
case of MPL  4 and Delay = 4. 
 Kasteren dataset 

The Kasteren dataset contains the data streams that a 26-year-
old man living alone in a three-room apartment where 14 state-
change sensors were installed. The data are collected for 28 days 
with the multiple sensors. The activities include leaving, toileting, 
showering, sleeping, breakfast, dinner, and others.  

The detailed information of activities is shown in Table 6, the 
sensor readings are set to get sampling per 60 seconds. The time 
slice duration is long enough to discriminative and short enough to 
provide high accuracy labeling results. For give a fair evaluation 
on such a dataset, the 28-days dataset are separated  into training 
set and test set using n-fold cross validation, which is that one full 
day is used to test and the other remaining days are used to train. 

Table 6. Kasteren dataset. 

Activities # of instances % of time 
Others   11.50% 
Leaving   34  56.40% 
Toileting 114    1.00% 
Showering   23    0.70% 
Sleeping   24  29.00% 
Breakfast   20    0.30% 
Dinner   10   0.90% 
Drink   20   0.20% 

 
This data set is further preprocessed by the ‘change point’ 

sampling and the ‘last’ filtering. The raw sensor representation 
gives a 1 when triggering, and a 0 otherwise. However, the 
preprocess of ‘change point’ sampling gives a 1 only while the 
sensor changing being detected. The ‘last’ sensor filtering then 
keeps 1 when a sensor is triggered at the last and the other sensors 
will be turned into 0 at the same time. 

 The experimental results on the three different data sets (raw, 
change point, last) are shown in Table 7 to Table 18. The tables 
from Table 7 to Table 12 are the results of the estimation function 
fp1. We found that time slice accuracy is better than class accuracy 
for all different datasets in the two estimation functions. For the 
measure of time slice accuracy, the raw data is better than the 
change point data in general but the best case (0.7876, in MPL=2 
and Delay =2) of the change point data is higher than the raw data. 
For the measure of class accuracy, the change point data is higher 
than the raw data no doubt. Nevertheless, the last data has the 
highest time slice accuracy and class accuracy while using the 
estimation function fp1. 

The tables from Table 13 to Table 18 are the results of the 
estimation function fp2. We found that for the measure of time 
slice accuracy, the raw data is higher than the change point data in 
all cases. However, for the measure of class accuracy, on the 
contrary, the change point data is higher than the raw data. As the 
estimation function fp1, the last data still has the highest time slice 
accuracy and class accuracy in the estimation function fp2. 

Although the estimation functions fp1 and fp2 are almost in a 
tie for the raw data, generally speaking, the effectiveness of the 
estimation function fp1 is better than fp2 except for the measure of 
class accuracy in the last data. The class accuracy of the last data is 
the highest especially. The class accuracy has 12% - 20% higher 
than the other data sets in average. The reason is that the last 
changed sensors is usually the time of activity starting or acting in 
the environment of multiple sensors. This characteristics show that 
our proposed scheme can determine the short patterns with activity 
changing effectively. 

Finally, we compare the proposed scheme with the results of 
HMM proposed in [Kasteren 2008]. The comparison is given in 
Figure 3 and Figure 4. The results of the proposed methods are 
selected from the case of MPL = 3 and Delay = 3. Figure 3 is the 
time slice accuracy and Figure 4 is the class accuracy. The 
comparison reflects the fact that the proposed scheme has great 
improvement in time slice accuracy for raw data. However, the 
change point data only senses the point of signal changing, it is 
disadvantageous for find the patterns for a specific activity. 
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Table 7. Time slice accuracy for raw data of KD with fp1. 

timeslice Delay=1 Delay=2 Delay=3 Delay=4
MPL = 1 0.7405 0.7411 0.7411 0.7410 
MPL = 2 0.7456 0.7463 0.7463 0.7460 
MPL = 3 0.7454 0.7608 0.7610 0.7607 
MPL = 4 0.7456 0.7566 0.7552 0.7552 
MPL = 5 0.7456 0.7565 0.7562 0.7571 
MPL = 6 0.7460 0.7571 0.7572 0.7569 

Table 8. Class accuracy for raw data of KD with fp1. 

class Delay=1 Delay=2 Delay=3 Delay=4
MPL = 1 0.4515 0.4648 0.4671 0.4685 
MPL = 2 0.5290 0.5399 0.5416 0.5424 
MPL = 3 0.4864 0.5234 0.5250 0.5254 
MPL = 4 0.4852 0.5132 0.5168 0.5188 
MPL = 5 0.4857 0.5077 0.5137 0.5162 
MPL = 6 0.4865 0.5082 0.5170 0.5194 

Table 9. Time slice accuracy for change point data of KD with fp1. 

timeslice Delay=1 Delay=2 Delay=3 Delay=4
MPL = 1 0.5824 0.5825 0.5826 0.5827 
MPL = 2 0.7874 0.7876 0.7871 0.7860 
MPL = 3 0.7269 0.7490 0.7494 0.7493 
MPL = 4 0.7228 0.7436 0.7451 0.7451 
MPL = 5 0.7231 0.7440 0.7458 0.7453 
MPL = 6 0.7232 0.7472 0.7475 0.7483 

Table 10. Class accuracy for change point data of KD with fp1. 

class Delay=1 Delay=2 Delay=3 Delay=4
MPL = 1 0.5055 0.5077 0.5083 0.5088 
MPL = 2 0.6820 0.6827 0.6888 0.6872 
MPL = 3 0.6241 0.6510 0.6556 0.6537 
MPL = 4 0.6023 0.6192 0.6137 0.6135 
MPL = 5 0.6091 0.6263 0.6221 0.6207 
MPL = 6 0.6126 0.6300 0.6262 0.6267 

Table 11. Time slice accuracy for last data of KD with fp1. 

timeslice Delay=1 Delay=2 Delay=3 Delay=4
MPL = 1 0.9516 0.9513 0.9505 0.9496 
MPL = 2 0.9075 0.9081 0.9070 0.9056 
MPL = 3 0.9411 0.9391 0.9374 0.9358 
MPL = 4 0.9424 0.9409 0.9380 0.9363 
MPL = 5 0.9454 0.9439 0.9404 0.9343 
MPL = 6 0.9454 0.9452 0.9417 0.9403 

Table 12. Class accuracy for last data of KD with fp1. 

class Delay=1 Delay=2 Delay=3 Delay=4
MPL = 1 0.6696 0.6815 0.6820 0.6810 
MPL = 2 0.6968 0.7046 0.7024 0.7005 
MPL = 3 0.6909 0.6987 0.6958 0.7003 
MPL = 4 0.6926 0.6985 0.6989 0.7027 
MPL = 5 0.6816 0.6838 0.6849 0.6876 
MPL = 6 0.6817 0.6898 0.6907 0.6970 

Table 13. Time slice accuracy for raw data of KD with fp2. 

timeslice Delay=1 Delay=2 Delay=3 Delay=4
MPL = 1 0.7421 0.7426 0.7425 0.7422 
MPL = 2 0.7397 0.7405 0.7404 0.7399 
MPL = 3 0.7450 0.7599 0.7601 0.7598 
MPL = 4 0.7455 0.7555 0.7545 0.7546 
MPL = 5 0.7455 0.7555 0.7560 0.7569 
MPL = 6 0.7452 0.7562 0.7571 0.7573 

Table 14. Class accuracy for raw data of KD with fp2. 

class Delay=1 Delay=2 Delay=3 Delay=4
MPL = 1 0.4821 0.4939 0.4948 0.4941 
MPL = 2 0.4922 0.5024 0.5038 0.5028 
MPL = 3 0.4828 0.5105 0.5136 0.5130 
MPL = 4 0.4895 0.5048 0.5128 0.5136 
MPL = 5 0.4894 0.4987 0.5097 0.5113 
MPL = 6 0.4864 0.5017 0.5151 0.5157 

Table 13. Time slice accuracy for change point data of KD with fp2. 

timeslice Delay=1 Delay=2 Delay=3 Delay=4
MPL = 1 0.5826 0.5827 0.5828 0.5828 
MPL = 2 0.6821 0.6824 0.6821 0.6816 
MPL = 3 0.6067 0.6456 0.6463 0.6467 
MPL = 4 0.6067 0.6446 0.6489 0.6494 
MPL = 5 0.6065 0.6448 0.6489 0.6501 
MPL = 6 0.6057 0.6481 0.6505 0.6530 

Table 16. Class accuracy for change point data of KD with fp2. 

class Delay=1 Delay=2 Delay=3 Delay=4
MPL = 1 0.5235 0.5248 0.5253 0.5258 
MPL = 2 0.5774 0.5725 0.5766 0.5768 
MPL = 3 0.5346 0.5596 0.5641 0.5641 
MPL = 4 0.5368 0.5469 0.5503 0.5516 
MPL = 5 0.5364 0.5508 0.5566 0.5603 
MPL = 6 0.5255 0.5500 0.5594 0.5634 

Table 17. Time slice accuracy for last data of KD with fp2. 

timeslice Delay=1 Delay=2 Delay=3 Delay=4
MPL = 1 0.9393 0.9391 0.9384 0.9376 
MPL = 2 0.9250 0.9256 0.9244 0.9230 
MPL = 3 0.9357 0.9325 0.9312 0.9300 
MPL = 4 0.9372 0.9345 0.9316 0.9303 
MPL = 5 0.9375 0.9364 0.9333 0.9269 
MPL = 6 0.9373 0.9378 0.9347 0.9329 

Table 18. Class accuracy for last data of KD with fp1. 

class Delay=1 Delay=2 Delay=3 Delay=4
MPL = 1 0.7578 0.7676 0.7667 0.7647 
MPL = 2 0.7536 0.7602 0.7560 0.7554 
MPL = 3 0.7556 0.7557 0.7509 0.7549 
MPL = 4 0.7556 0.7556 0.7493 0.7526 
MPL = 5 0.7537 0.7519 0.7446 0.7425 
MPL = 6 0.7519 0.7533 0.7456 0.7467 
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Figure 3. A comparison of time slice accuracy in KD. 

Class Accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

raw change last

HMM

fp1

fp2

 

Figure 4. A comparison of class accuracy in KD. 

5. Conclusion 

In this paper, we propose a novel scheme based on minimal 
distinguishing patterns for activity recognition on multi-sensor 
data streams. First, the minimal distinguishing patterns are mined 
to determine the activity for each streaming sequence. Two 
estimation functions and the sequence classification algorithm are 
proposed to resolve the undecided cases effectively. As further 
work, the proposed scheme is easy to extend to online streaming 
data recognition and concept drift handling. 
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