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The split pickup and delivery problem is to find the shortest route that can provide delivery nodes with com-
modities collected from pickup nodes, subject to the vehicle load constraint. In particular, the split feature allows
multiple visits to nodes and thus enables the vehicle to load or discharge an arbitrary portion of commodities along
the route. This problem concerns the practical situations of limited capacity and insufficient commodities left for
subsequent service. To resolve the split pickup and delivery problem, this study develops a memetic algorithm
(MA) based on genetic algorithm and the modified 2-opt operator. The proposed MA employs a fixed-length
representation carrying both the information of visiting order and the portion of requests satisfied; moreover, the
modified 2-opt operator reduces the transportation cost without destroying the feasibility of route. Experimental
results validate the optimization efficacy of the proposed MA in arrangement of visiting order and demand of each
customer. In addition, the utility of split feature as well as its effect are examined in the empirical study.

1. Introduction
The pickup and delivery problems (PDPs) arise in vari-

ous industries such as logistics and robotics. These prob-
lems consist of several nodes classified as pickup customers
and delivery customers. The former supplies while the lat-
ter demands an amount of commodities. The typical ob-
jective of PDPs is to find the minimum-cost route such
that the requirement of each customer can be satisfied;
that is, pickup customers provide and delivery customers
receive the sufficient amount of commodities. Solving the
PDPs concerns vehicle routing and commodity distribution.
Several variants of the PDPs have been proved to be NP-
hard, and each considers particular assumptions about the
transportation scenario, requirements for pickup and de-
livery customers, and constraints on the vehicle capacity.
The PDPs generally assume equal amount of total sup-
ply and total demand and, therefore, induce an implicit
constraint of visiting all customers [2]. Specifically, let
G = (V,A) be a complete and directed graph with ver-
tex set V = {v0, v1, . . . , vn} in which v0 serves as the depot
and the remaining are customers. Each arc (vi, vj) in the
arc set A = {(vi, vj)|vi, vj ∈ V, vi 6= vj} has a non-negative
cost c(vi, vj). Let X = {1, . . . , e} be a set of commodity
entities to be transported. Each node supplies or demands
a non-negative amount of commodities in accordance with
commodity matrix D = [d1 . . .de] where |dix| denotes the
amount of commodity x ∈ X supplied (dix > 0) or de-
manded (dix < 0) by vi. Under the assumption that the
total supply and the total demand are in equilibrium for
each commodity entity x ∈ X, i.e.,

∑
vi∈V dix = 0, a set of

vehicles pick up or deliver commodities available or required
at a vertex, forming routes such that

1. all pickup and delivery requests are served;

2. the constraint on vehicle capacity is satisfied;

3. the route cost is minimized.
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Berbeglia et al. [2] presented a comprehensive survey, which
classifies the PDPs into one-to-one, one-to-many-to-one,
and many-to-many structures according to the types of
transportation endpoints.
This study deals with the split pickup and delivery prob-

lem, which particularly allows each node to be visited more
than once, considering the situation that the vehicle is in-
capable of loading or supplying all commodities due to in-
sufficient vehicle capacity or shortage of commodities on
board at some nodes during the pickup and delivery pro-
cess. While most PDPs serve the requests by Hamiltonian
cycles, the route for the split pickup and delivery problem
is not necessarily a Hamiltonian cycle. The split pickup
and delivery problem therefore adapts to any vehicle ca-
pacity. Notably, this study focuses on many-to-many
structure, where the commodities collected from pickup cus-
tomers can supply several delivery customers. The public
bike sharing systems and agricultural marketing coopera-
tive are two real-world applications of the split pickup and
delivery problem, in which the key is to arrange a route for
the vehicle to transport commodities such as bicycles and
products to stations or retailers so as to balance the system
inventory and distribute merchandise.
Multiple visits are also considered in the vehicle rout-

ing problem (VRP) where a single customer request can
be served by several vehicles for flexible use of vehicle ca-
pacity. Dror and Trudeau [5] proposed the split delivery
vehicle routing problem (SDVRP) and conducted several
experiments to compare the SDVRP and the regular VRP.
Boudia et al. [3] devised a memetic algorithm with small
population size for the SDVRP. Seven local search tech-
niques, classified into customer assignment for vehicles and
commodity distribution, are used to enhance the solution
quality. Enabling split delivery, however, requires more
complex computation since more viable solutions should be
taken into account in addition to arranging disjoint routes
for vehicles. Archetti et al. [1] showed that this relaxation
reduces the transportation cost when the average demand
of delivery customers is within

[
1
2
Q, 3

4
Q
]
, where Q denotes
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the vehicle capacity. On the other hand, a large difference
between customer demands and vehicle capacity makes split
delivery disadvantageous. As for the PDPs, Nowak et al.
[7, 8] discussed the benefit of pickup and delivery with split
loads (PDPSL), which belongs to the one-to-one structure,
where each pickup node has a designate delivery node.
In this study, we consider homogeneous commodity en-

tity, namely |X| = 1, in the split pickup and delivery prob-
lem. The amount of commodities at node vi ∈ V is simply
denoted by di. The vertex set consists of depot (or starter)
v0 with d0 = 0 and two disjoint sets: V + = {vi|vi ∈ V, di >
0} of pickup nodes and V − = {vi|vi ∈ V, di < 0} of de-
livery nodes. The split pickup and delivery problem seeks
a minimum-cost route for a vehicle to visit each customer
at least once, in order to gain commodities from pickup
nodes and supply the commodities to delivery nodes. In
addition, the solution is subject to the constraint that the
vehicle cannot overload or attempt to serve delivery nodes
with commodities more than on board.
The objective of the split pickup and delivery problem is

to find a feasible permutation p = (v0, v(1), v(2), . . . , v(m))

such that the overall cost is minimum, where v(i) represents
the ith visiting node, m denotes the total number of visits
along the route (m ≥ n). Note that the nodes visited more
than once are called ‘split nodes’. Formally, the objective
is defined by

argmin

m−1∑
i=1

c(v(i), v(i+1)) + c(v0, v(1)) + c(v(m), v0)

(1)

s.t.

0 ≤ `(i) ≤ Q, ∀i ∈ {1, . . . ,m} (2)

where `(i) in constraint (2) denotes the vehicle load at
v(i) along the visiting order, i.e., `(i) = `(i−1) + ηv(i) with
`(0) = 0, and ηv(i) represents the number of commodity
units collected or discharged as visiting v(i). The objective
(1) is to minimize the transportation cost subject to capac-
ity limitation and non-negative vehicle load. Furthermore,
for each customer vj ∈ V ,

∑
v(i)∈{p∩vj}

ηv(i) = dj must
hold such that all pickup and delivery requests are served.
This study presents a memetic algorithm (MA) based on

genetic algorithm (GA) and local search to resolve the split
pickup and delivery problem. More specifically, we utilize a
fixed-length representation of candidate solutions to inher-
ently deal with the varying number of visits and the portion
of requests satisfied. The variation operators are designed
to change the visiting order and reassign the portion of com-
modities loaded or discharged in the meanwhile. The mod-
ified 2-opt operator, furthermore, serves as the local search
to shorten the route without destroying its feasibility. A se-
ries of experiments are conducted to examine performance
of the proposed MA and investigate the tendency of split
nodes.
The remainder of this paper is organized as follows. Sec-

tion 2 describes the proposed MA in detail. Section 3
presents and discusses the experimental results. Finally, we

draw conclusions and recommend the directions for future
work in Section 4.

2. Evolutionary Approach
To resolve the split pickup and delivery problem, this

study develops a memetic algorithm (MA) based on ge-
netic algorithm (GA) and local search. The MA consid-
ers optimization as a search process in the solution space
and implements Darwinism as well as Lamarckian or Bald-
winian theory to imitate evolution and lifetime learning.
By integrating local enhancement into canonical evolution-
ary algorithm, MA significantly improves its search ability
and has been widely shown to enhance solution quality and
convergence speed.
The proposed MA follows the reproduction process of

GA and adopts local search to enhance the solution qual-
ity. Restated, the MA represents candidate solutions as
chromosomes to enable evolutionary search in the solution
space, and their respective quality (fitness) are evaluated
through the fitness function. After initializing a set (popu-
lation) of chromosomes, MA guides the search according to
the evolutionary process inspired by nature. By mimicking
natural evolution, the selection–crossover–mutation–local-
search process generates new solutions and continues until
reaching the predetermined termination criterion. The se-
lection operator picks two chromosomes as parents from
the population. The crossover operator then exchanges the
information between these two parents to produce their off-
spring and the mutation operator is performed to slightly
alter some genes for genetic diversity. The MA then exe-
cutes local search to improve the chromosome. After the off-
spring population is filled, the survival selection implements
Darwinian theory of “Survival of the Fittest” to choose the
chromosomes for the next generation.
For the split pickup and delivery problem, this study uses

a fixed length representation of candidate solutions to han-
dle the varying number of split nodes. A modified 2-opt
operator is adopted to improve the arrangement of visit-
ing order. The fitness function, moreover, helps to handle
the constraint on vehicle capacity and non-negative load
along the route. More details about the proposed MA are
described below.

2.1 Representation
A chromosome encodes a candidate solution for subse-

quent variation operators. An adequate chromosome rep-
resentation for the split pickup and delivery problem needs
to contain the information of visiting order and the por-
tion of the commodities collected from pickup nodes and
supplied to delivery nodes. This study utilizes the per-
mutation representation in terms of demand units to fulfill
the above both requirements. For a split pickup and deliv-
ery problem with a total demand amount D =

∑n
i=1 |di|,

a permutation of D integers {1, 2, . . . , D} represents the
order of commodity transportation service, where each in-
teger corresponds to a particular customer. Table 1 pro-
vides an example of five customers with D = 14 and
the identification numbers to demand units. A chro-
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Table 1: An example split pickup and delivery problem with
five customers with D = 14 and the corresponding identity
number (ID) for each demand unit.

Vertex di ID of demand unit
v1 +3 1, 2, 3

v2 +3 4, 5, 6

v3 −5 7, 8, 9, 10, 11

v4 +1 12

v5 −2 13, 14

mosome is illustrated in Fig. 1, where candidate solu-
tion (1, 2, 3, 8, 7, 10, 12, 5, 6, 14, 13, 9, 4, 11) represents visit-
ing order (v0, v1, v3, v4, v2, v5, v3, v2, v3, v0). Accordingly,
this route has two split nodes v2 and v3 and the multi-
ple visits to pickup node v2 and delivery node v3 gradually
satisfy their requests for commodities. Noteworthily, the
permutation of demand units not only implies a tour for the
vehicle, but inherently specifies the amount of commodities
loaded or discharged through aggregating adjacent demand
units belonging to the same customer.

2.2 Fitness Evaluation and Constraint Han-
dling

The fitness function affects the selection of parents and
survivors and therefore influences the search direction. An
ideal fitness function must distinguish between good and
bad candidate solutions. This study directly uses the ob-
jective function (1) as the fitness function f(p) for the MA.
Formally, given a chromosome p representing the visiting
order of nodes, its fitness value is defined as

f(p) =

D−1∑
i=1

c(u(i), u(i+1)) + c(v0, u(1)) + c(u(D), v0), (3)

where c(x, y) gives the transportation cost between nodes
x and y, and u(i) is the ith demand unit on the visiting
order and corresponds to the node requesting this pickup
or delivery service.
Some chromosomes may be infeasible due to violation of

the constraint on vehicle load. The fitness evaluation that
can reflect the feasibility helps to render promising search
directions in the constrained optimization problems. To
this end, we adopt Deb’s constraint handling method [4],
which favors the low-cost feasible solutions and compares
infeasible solutions according to the degree of constraint
violation. This study defines a violation measure as follows:

g(p) = `exc + |`neg|+
D∑
i=1

νi (4)

with

`exc = max
i∈{1,...,D}

(`(i), Q)−Q (5)

`neg = min
i∈{1,...,D}

(`(i), 0) (6)

νi =


1 `(i−1) < Q and `(i) > Q, or

`(i−1) > 0 and `(i) < 0

0 otherwise

(7)

1 2 3 8 7 10 12 5 6 14 13 9 4 11
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v2

v3
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0
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v1 v3 v4 v2 v5 v3 v2 v3

1

0
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0

Figure 1: An example representation for the split pickup
and delivery problem in Table 1. The lower string depicts
the visiting order in terms of vertices according to the per-
mutation of demand units. Pickup nodes are marked in
gray; delivery nodes are marked in white. The figures upon
arcs are vehicle loads.

where `exc represents the amount of load exceeding the ve-
hicle capacity, `neg denotes the shortage of commodities on
board, and νi indicates failing to take the advantage of
the split feature along the route. The proposed violation
measure g(p) considers both the exceeding and insufficient
amounts of vehicle load; therefore, the incapability of prop-
erly splitting the demand at a particular node will be penal-
ized. As the basis of parent selection and survivor selection,
this fitness evaluation handles the constraint by leading the
search toward feasible solutions.

2.3 Genetic Operators and Local Search
The genetic operators such as selection, crossover, and

mutation facilitate exploring the search space. This study
adopts the binary tournament selection as parent selection
operator. Based on the proposed fitness evaluation, the
fitter of two chromosomes randomly picked from the popu-
lation is selected as a parent. The crossover operation ex-
changes and recombines the genetic information of parents,
and the mutation operation slightly changes the composi-
tion of offspring to introduce diversity to the population. In
view of the permutation representation for the split pickup
and delivery problem, we employ the order crossover and in-
version mutation [6]. The order crossover randomly chooses
two cut points to divide each parent (route) into two seg-
ments. An offspring is generated by directly inheriting a
segment from one parent and filling the remainder genes
with absent demand units according to the visiting order of
the other parent. The inversion mutation operator reverses
the order of genes in a randomly determined segment. The
order crossover and inversion mutation can avoid duplicate
appearances of single identity in an individual and thus sat-
isfies the requirement of a legal permutation. In addition
to the change of visiting order, the variation operators im-
plicitly alter the portion of demands satisfied.
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Table 2: Parameter setting for MA.

Parameter Value

Representation Permutation of demand units
Population size 500
Initialization Random
Parent selection Binary tournament
Crossover Order crossover (pc = 1.0)

Mutation Inversion (pm = 1.0)

Local search Modified 2-opt
Survival selection (µ+ λ)

Termination 15000 generations

Moreover, we employ the modified 2-opt operator [9] to
implement the local enhancement in MA. The modified 2-
opt iteratively inverts the segments within permitted sub-
strings in the chromosome to achieve a shorter route with-
out breaking the feasibility in vehicle load. The substrings
are determined by separating the chromosome on transi-
tions from pickup node to delivery node and vice versa,
given that these changeover points coincide with critical
loads along the route. Restated, the required capacity takes
place at one of the transitions from pickup node to delivery
node and the minimal vehicle load exists in the opposite
situations. Note that the subtotal of demands keeps fixed
due to the transitive feature disregarding the order within
a substring, and the critical loads are therefore held, which
maintains the solution feasibility. After generating a popu-
lation of offspring, only the fittest individuals of the union
of all parents and offspring are selected to survive into the
next generation.

3. Experimental Results
This study conducts a series of experiments to evaluate

the effectiveness of the proposed MA on the split pickup
and delivery problem. The benchmark instances are mod-
ified from the problem instances used in [9]. In modifying
the instances for the split pickup and delivery problem, we
limit demand range in [−5,+5]. The test suit is denoted by
X/Y, where X is the original instance name and Y repre-
sents the number of nodes in the split pickup and delivery
problem instance. For example, n20mosA/17 denotes a 17-
node instance of split pickup and delivery problem modified
from n20mosH. The cost between two nodes is defined as
their distance. The split pickup and delivery problem is to
find the shortest route that can provide delivery nodes with
commodities collected from pickup nodes, where the split
feature enables multiple visits to a node. In other words,
the vehicle can load or discharge any portion of commodities
supplied by pickup nodes or demanded by delivery nodes,
respectively. Table 2 summarizes the parameter setting for
the MA used in the experiments. In particular, the ter-
mination criterion for n100mosA/78 and n100mosB/89 is
extended to be 40000 generations due to their large prob-
lem scale. Each test instance includes 30 independent runs
of MA.

First, we investigate the average route lengths and the
influence of vehicle capacity upon them. According to Ta-
ble 3, the average route cost decreases as vehicle capacity
Q increases in that a small capacity raises the requirement
for splitting nodes and thus increases the route cost. Fig-
ure 2 illustrates the variation of route cost against vehicle
capacity, where a significant increase in route cost occurs
at Q = 3, 5. These results also validate the optimization ef-
ficacy of the proposed MA in arrangement of visiting order
and demand of each customer. In addition, the number of
split nodes in the best solutions demonstrates the tendency
to aggregate visits: For Q = 10, 20, the average number
of visits is lower than 2.0 except for n100mosA/78, imply-
ing that the vehicle visits most nodes only once. Due to
multiple visits, the solution space can reach five-fold of the
customer number in the worst case; for instance, the chro-
mosomes for n100mosA/78 have 390 genes. These features
make the split pickup and delivery problem a difficult con-
strained optimization problem.
Figure 3 presents the proportions for each number of vis-

its. The results reveal the tendency to visit the majority of
customers exactly once even with the lowest vehicle capac-
ity. The proposed MA inclines to aggregate the service of
demand units for large vehicle capacity. Additionally, more
visits are required on the instances with more customers
as shown in Fig. 3 and Table 3. This outcome reflects the
complication of search for a feasible minimal-cost route that
includes multiple visits to certain nodes and considers their
orders.
Furthermore, Fig. 4 shows the anytime behavior of the

proposed MA. For consistency of comparison, the y coordi-
nate denotes the ratio of route cost to the known best cost.
The results demonstrate that, in general, a large capacity
leads to fast convergence since this loose constraint involves
more feasible solutions and thus enables a relatively smooth
way to reach the optimum. The results show a drastic im-
provement in convergence speed for Q = 10, 20 on all test
instances. The long generations of infeasible solutions for
n100mosA/78 and n100mosB/89 with Q = 3 reconfirm the
intensification on splitting visits and on the constraint.

4. Conclusions
The split pickup and delivery problem aims to find

the shortest route that can provide delivery nodes with
commodities collected from pickup nodes subject to non-
negative vehicle load and capacity limitation. An impor-
tant feature of this problem is its allowance for multiple
visits to a single node, which enables the vehicle to load
or discharge arbitrary portion of commodities supplied by
pickup nodes or demanded by delivery nodes, respectively.
The need for split nodes arises especially when the vehicle
is incapable of loading or supplying all commodities due to
insufficient vehicle capacity or shortage of commodities on
board at some nodes along the route. The split pickup and
delivery problem therefore adapts to any vehicle capacity.
This study designs an MA based on genetic algorithm

and 2-opt local search for the split pickup and delivery prob-
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Table 3: Average route cost (cost), average number of split nodes (#splits) and average number of visits per node (#visits)
in the best route over 30 trials on 10 test instances with different vehicle capacity Q. Note that infeasible solutions are
disregarded in the averages.

Q = 3 Q = 5

instance cost #splits #visits cost #splits #visits

n20mosA/17 5414.00 2.17 2.00 4552.77 0.60 1.53
n20mosB/15 4872.23 2.00 2.00 4021.77 0.87 1.87
n30mosA/28 8706.03 6.87 2.00 6385.20 1.37 1.67
n30mosB/25 6951.17 5.83 2.00 5669.90 1.53 1.90
n40mosA/33 8041.60 8.80 2.01 6530.17 2.33 1.98
n40mosB/34 7877.53 9.57 2.03 6002.67 2.43 2.00
n50mosA/41 8579.23 9.23 2.01 7056.40 2.53 2.01
n50mosB/43 10633.17 15.23 2.00 8191.77 4.77 2.00
n100mosA/78 18897.43 27.64 2.03 13241.50 9.03 2.06
n100mosB/89 17072.50 41.17 2.17 11243.70 7.83 2.01

Q = 10 Q = 20

instance cost #splits #visits cost #splits #visits

n20mosA/17 3822.43 0.23 1.23 3702.73 0.03 1.03
n20mosB/15 3825.10 0.03 1.03 4003.33 0.00 1.00
n30mosA/28 5168.03 0.33 1.30 4977.60 0.27 1.23
n30mosB/25 4962.57 0.77 1.57 4812.87 0.80 1.47
n40mosA/33 5597.23 1.03 1.57 5173.20 0.47 1.23
n40mosB/34 5465.00 0.93 1.68 5117.93 0.33 1.31
n50mosA/41 6283.13 0.53 1.30 6341.40 0.70 1.37
n50mosB/43 6333.97 0.57 1.50 5972.20 0.33 1.17
n100mosA/78 10204.30 4.47 2.00 8887.67 3.43 1.90
n100mosB/89 8912.43 1.90 1.77 8263.47 1.57 1.67
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Figure 2: Average route cost against vehicle capacity Q. The red lines indicate the standard errors.
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Figure 3: Proportion of the number of visits.
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Figure 4: Anytime behavior of the proposed MA.
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lem. A fixed-length chromosome representation is proposed
to indicate the visiting order of customer nodes as well as
the amount of commodities picked up or delivered at each
node. The variation operators are devised to simultaneously
change the genetic information of candidate solutions. The
modified 2-opt operator, furthermore, serves as the local
search to shorten the route without destroying its feasibil-
ity.
A series of experiments are carried out to examine perfor-

mance of the proposed MA and characterize the split pickup
and delivery problem. The experimental results validate the
optimization efficacy of the proposed MA in arrangement
of visiting order and demands of customers. In addition,
the results show that small vehicle capacity raises the re-
quirement for splitting nodes and thus increases the route
cost; nevertheless, the vehicle tends to visit the majority of
customers exactly once even with small capacity.
Future work includes modification of algorithms for the

related problems. Extension to design of heuristic operators
and performance comparison is also an important direction
for the study on the split pickup and delivery problem.
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