
The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

- 1 -

 Effective Integration Frameworks for Combining Computer
Gaming programs with the Grid Computing System

Chih-Hung Chen and Shun-Shii Lin

Department of Computer Science and Information Engineering,
National Taiwan Normal University, Taipei, Taiwan, ROC

The high space complexity and the high time complexity are still severe limitations when the game tree is searched until a

very deep depth in computer gaming programs. In order to reduce these limitations, we aim to parallelize computer gaming

programs by using the grid computing system which was developed by Professor I-Chen Wu. In this system, it exploits spare

resources such as computing powers and memory storages of desktops or some personal computers for the applications

requiring huge amount of computation. However, when the gaming programs are combined with the grid computing system,

it is necessary to resume the gaming programs for each move during a game. To overcome the above problem, in this paper,

we introduce some approaches to avoid the resumption of the running programs. According to the initial property of the

computer gaming programs, we design two frameworks to combine the computer gaming programs with the grid computing

system. The experiments show that its performance is improved 8.27 times on a Connect6 program and its winning rate is

enhanced 42.8% on a Go program. The results indicate that our approach combined with the grid computing system is quite

powerful for the computer gaming programs. Furthermore, these frameworks are easy for integration between the computer

gaming programs and the grid computing system.

1. Introduction

There are many applications (e.g., business intelligence [2],

social network [12], and high complexity computer games [6])

that require massive computation resources. In the past, they

usually were dealt with a single computer. However, we

constantly need to increase the computing power, memory

capacity, and storage space to overcome some more complex

situations. This will cause a waste of resources because more

advanced hardware devices are continuously installed to replace

the old ones, and the renewed hardware devices are very

expensive. Furthermore, there are some limitations for keeping

strengthening the power of a hardware device on the

manufacturing process under the current architecture. All of

above are the reasons why those applications could not be

resolved well in the past.

With the development of network technology, techniques of

the grid computing, the volunteer computing, the cloud

computing, etc. are proposed to connect lots of low-priced

computation devices to construct a computing system which is

more powerful than a single high-priced computer. Therefore,

those problems that demand numerous computation resources

might be solved by these kinds of network-connected computing

systems.

However, the computation resources are usually not managed

perfectly in daily life. In order to exploit exhaustively all

resources we owned, we take advantage of the Desktop Grid

computing system [7][13] which was developed by Professor I-

Chen Wu at the National Chiao Tung University to integrate lots

of computers in our laboratory. We design two frameworks for

combining the Desktop Grid computing system with the

computer gaming programs. The goal is to let the computer

gaming programs achieve higher performance from the shared

resources.

2. Desktop Grid computing system

The Desktop Grid computing system [7][13] which was

developed by Professor I-Chen Wu at the National Chiao Tung

University is a volunteer-computing-based grid computing

system. It provides a suitable environment for the computer

gaming programs.

The Desktop Grid computing system is constructed from three

parts labeled APP, BROKER, and PC. The architecture diagram

of the Desktop Grid is shown in Figure 1.

Figure 1 The architecture diagram of the Desktop Grid

3C3-IOS-2-2

Contact: Shun-Shii Lin, Dept. of Computer Science and

Information Engineering, National Taiwan Normal Univ., No.

88, Sec. 4, Ting-Chow Rd., Taipei, Taiwan, R.O.C., Tel: 886-2-

77346671, Fax: 886-2-29322378, linss@csie.ntnu.edu.tw.

The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

- 2 -

The APP which is implemented by any user is a computer

gaming program, the PC that is offered by an organization is a

personal computer, and the BROKER is a coordinator which

serves as a bridge between APPs and PCs.

The PC must connect to the BROKER to share its resource to

other users, thus it can also get powerful energy from other PCs

offered from other organizations. All the APPs need to do is to

create tasks that require to be run and to submit these tasks to the

BROKER. Then the APPs wait for the response from the

BROKER. Now, the BROKER will assign some PCs to do the

tasks, and await the results. When a PC is assigned a task, it will

begin doing the task. When a PC finishes its task, it will reply the

results to the BROKER right away. The BROKER then returns

the results to the original APP which creates the task. Finally the

APP gets the results and does the next process. The steps are

illustrated in Figure 2.

3. Frameworks for Desktop Grid

The volume of research into computer games has increased

steadily in recent years. When the gaming program is executed

for searching the optimal move in the game tree, it consumes

most resources. Within the time allotted, the more resources we

have, the further evolution will be estimated well. To reinforce

the power of the gaming programs, we try to take advantage of

the Desktop Grid to share the resources of each computer in our

laboratory. And we hope that our gaming programs can compete

with human experts in the future.

For combining the gaming programs with the Desktop Grid, a

computer gaming program should be divided into two parts; one

is the controller (hereinafter referred to as “APP”), and the other

is the engineer (hereinafter referred to as “WORKER”). The APP

is the major portion of the gaming program, and it must support

the communication protocol for connecting with the BROKER.

When the game is playing, the APP may generate some

instructions for the WORKERs and wrap them up into a task.

Then, the APP submits the task to the BROKER and waits for

the returned results. At this moment the APP can do something

else until the results are returned. If the results of all tasks are

received, the APP will integrate all the results and make a

decision. Moreover, the WORKER program is usually a

searching engine which expands a subtree of the whole game tree.

The PC ought to keep the WORKER program running all the

time. While the task is arrived, the PC wakes up the WORKER

for performing the task created by the APP.

When the gaming programs are directly combined with the

Desktop Grid, it is necessary to resume the WORKER for each

move during a game. To overcome the above problem, in this

paper, we introduce some approaches to avoid the resumption of

the running programs. According to the initial property of the

WORKERs, we design two different frameworks (named

wakeup immediately [3] and wakeup non-immediately [4]) to

integrate the computer gaming programs into the Desktop Grid.

The advantages of these frameworks are that they require less

running time and fewer codes to be modified. As following, we

will describe these two frameworks in more detail.

3.1 Wakeup immediately

In this type of framework, the WORKERs take a little time

from initial state to ready state when the WORKERs are

executed. It is so fast that we can ignore this little time. When the

PCs are assigned some tasks, they will wake up the WORKERs

to deal with the tasks. At the beginning, the APP submits tasks to

the BROKER. Then, the BROKER assigns the tasks to some PCs.

Now, the PCs wake up the WORKERs and assign the tasks. The

WORKERs then start to do the tasks. When a WORKER

completes its task, it will output the results and terminate itself.

At last, the results are passed from the BROKER to the APP.

And the task is finished. These steps are illustrated in Figure 3.

3.2 Wakeup non-immediately

In this type of framework, the WORKERs take a longer time

to get ready when they are performed. When a PC is assigned a

task, it will wake up the WORKER to do the task. The

WORKER takes more time to finish the task due to its delay. If

we can eliminate the delay caused by the WORKERs, then the

WORKERs will terminate earlier. In other words, we may make

good use of the time to let the WORKERs do more work.

Figure 2 The flow chart of the Desktop Grid

Figure 3 The diagram of wakeup immediately

The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

- 3 -

To aim at the above purpose, we run the WORKERs firstly

and allow it to reside on the PCs. When the Desktop Grid

computing system is working, the WORKERs always stand by

for doing tasks. To adjust the framework to fit the operations of

the Desktop Grid, we implement a program called ADAPTER to

be waked up by the PCs. Thus, the ADAPTERs replace the role

that is originally played by the WORKERs. Now, an ADAPTER

acts as a mouthpiece between a PC and a WORKER. The PCs

communicate with the WORKERs through the ADAPTERs, and

vice versa.

The steps are refined and illustrated in Figure 4. To start with,

the WORKERs reside at the PCs in advance. Next, the APP

submits tasks to the BROKER. The BROKER then assigns these

tasks to the PCs. The PCs wake up the ADAPTERs and assign

the tasks to them. Now, the ADAPTERs pass the tasks to the

WORKERs that are ready for work. When a WORKER achieves

its task, it will pass the results to the ADAPTER and wait for the

next task. Then, the ADAPTER outputs the results and

terminates itself. Finally, the results will be returned to the APP

step by step. At last, the processes of the task are over.

3.3 Summary

In the Desktop Grid computing system, the messages that are

passed by the BROKER are communicated through the network.

It takes more time to communicate with the network than within

a computer. To share the penalty for the networking

communication, we suggest to let each task do more instructions

to reduce the times of the networking communication. Therefore,

we should balance between the number of the instructions and

the times of the networking communication within a fixed time

limit.

If we already had some computer gaming programs, and we

want these programs to be integrated into the Desktop Grid

computing system, we can choose one of these two frameworks

introduced above to combine with the Desktop Grid according to

the property of the gaming programs. To integrate with these two

frameworks, fewer codes are needed to be modified in the

gaming programs. By the way, combining with the framework of

wakeup non-immediately, the time saved can be used for doing

other important things when the messages are communicated on

the network. Thus, we can utilize our resources more efficiently.

4. Experiments

In this section, we select one gaming program for each

framework to experiment. For the sake of fairness, we pick some

computers which have same specification to do the experiments.

Each computer uses a single core processor to handle the tasks in

the experiments. The results of the experiments are showed in the

following subsections.

4.1 Wakeup immediately

We choose a Connect6 [5][8] program named Ant [3] to

perform the experiments for the framework of wakeup

immediately. Ant uses threat-space search [1] for exploring the

game tree. When the program is searching, it will check if there

exists a threat within the current branch of the game tree. If there

is a threat on the branch, then the children nodes of this branch

will be expanded. Now, the program repeats to check for the

presence of successive threats. When the program finds a path

that has a sequence of threats to let its opponent lose the game, it

will win the game with the sequence of the threat moves.

The WORKERs that get ready quickly are classified as the

framework of wakeup immediately. The searching engine of Ant

just belongs to this type. Therefore, we let Ant complete 16880

different searches on a single computer, and record the searching

time for each search. Then, we let Ant do these 16880 searches

with multi-computers by the Desktop Grid computing system.

Finally we compare the searching time on a single computer with

multi-computers. The results are shown in Table 1.

Table 1 The experimental results for Ant

Number of
computers

Total time for
16880 searches

Average time for
each search

Speedup

1 155572.83 (s) 184.33 (s) 1.00

4 62001.08 (s) 73.46 (s) 2.51

8 33021.50 (s) 39.13 (s) 4.71

12 24463.34 (s) 28.99 (s) 6.36

16 21724.56 (s) 25.74 (s) 7.16

20 18801.79 (s) 22.28 (s) 8.27

The experiments indicate that it takes 184.33 seconds for a

search with a single computer in average. But it just needs 22.28

seconds with 20 computers working together. So the

performance of 20 computers working together is 8.27 times

faster than a single computer. Furthermore, our results show that

the more resources we have the higher performance we will get.

4.2 Wakeup non-immediately

We select a Go program called ERICA [10][11] to do the

experiments for the framework of wakeup non-immediately.

ERICA uses Monte-Carlo Tree search which is a best-first search

Figure 4 The diagram of wakeup non-immediately

The 27th Annual Conference of the Japanese Society for Artificial Intelligence, 2013

- 4 -

algorithm based on random playouts to estimate the values of the

most promising moves accurately [9].

The WORKERs which get ready slowly are classified as the

framework of wakeup non-immediately. The searching engine of

ERICA just belongs to this type. However, when the game tree is

grown incrementally in a best first manner guided by the

simulations, it has the shared memory problem in the Monte-

Carlo Tree search. To reduce the space complexity of the

experiments, we force the WORKERs to simulate locally on its

computer. At last, the outputs from each computer will vote for

the final results. In addition, the number of the random playouts

is set to 10000. We then let ERICA run on a single computer to

compete with another ERICA running on multi-computers. The

results are shown in Table 2.

Table 2 The results of multi-computers vs. a single computer

Number of
computers

Play black
Win / Lose

Play white
Win / Lose

Winning rate

3 11 / 10 14 / 15 50 %

5 17 / 12 14 / 7 62 %

7 16 / 8 21 / 5 74 %

9 16 / 9 22 / 3 76 %

11 18 / 6 18 / 8 72 %

The experiments indicate that when the number of computers

is greater than or equal to 7, the winning rates reach a fixed

percent. To confirm the results, we test 500 games for comparing

ERICA running on a single computer with another ERICA

running on 7 computers together. In order to save the time for

experiments, we set the number of the random playouts to 500.

The results are shown in Table 3. It reveals that the winning rates

of 7 computers working together is 71.4 % against a single

computer. In general, when a program competes with itself using

two machines with the same specification, the result should be

fifty-fifty. So the winning rate is improved 42.8% by using 7

computers together.

Table 3 The results of 7-computers vs. 1-computer

Number of
computers

Play black
Win / Lose

Play white
Win / Lose

Winning rate

7 175 / 66 182 / 77 71.4 %

5. Conclusion

When we want to find a better move for a complicated game,

the gaming program will consume a lot of time and require

massive computation resources to explore the game tree. We

make good use of the Desktop Grid computing system to connect

many computers in our laboratory to provide a powerful

computing resource. According to the initial property of the

computer gaming programs, we design two frameworks to

integrate the computer programs into the Desktop Grid

computing system. The experiments show that its performance is

enhanced 8.27 times on a Connect6 program and its winning rate

is improved 42.8% on a Go program. The results indicate that

our frameworks integrated with the Desktop Grid are really

powerful for computer games. In general, if we want to combine

some computer gaming programs with the Desktop Grid by these

frameworks, then we will need fewer codes to be modified in the

gaming programs and less executing time to do the tasks. So

these two frameworks are efficient approaches for integrating

computer gaming programs into the Desktop Grid computing

system.

References

[1] Allis, L.V., Herik, H. Jaap van den, and Huntjens M.P.H.,
“Go-Moku and Threat-Space Search,” Report CS 1993-02,
Department of Computer Science, Faculty of General
Sciences, University of Netherlands.

[2] Business intelligence, http://en.wikipedia.org/wiki/
Business_intelligence.

[3] Chih-Hung Chen, Shun-Shii Lin, and Min-Huei Huang,
“Volunteer Computing System Applied to Computer
Games,” TCGA 2012 conference, Hualien, Taiwan, 2012.

[4] Chih-Hung Chen, Terry Lao, and Shun-Shii Lin, “Design a
Monte-Carlo Go to Combine with the Volunteer Computing
System,” TAAI 2012 conference, Tainan, Taiwan, 2012.

[5] Connect6, http://www.connect6.org/web/index.php?lang=en

[6] H. Jaap van den Herik, Jos W. H. M. Uiterwijk, Jack van
Rijswijck, “Games solved: Now and in the future, ”
Artificial Intelligence, 134(1-2): 277-311, 2002.

[7] I-Chen Wu, Chingping Chen, Ping-Hung Lin, Guo-Zhan
Huang, Lung-Ping Chen, Der-Johng Sun, Yi-Chih Chan,
and Hsin-Yun Tsou, “A Volunteer-Computing-Based Grid
Environment for Connect6 Applications,” The 12th IEEE
International Conference on Computational Science and
Engineering (CSE-09), Vancouver, Canada, 2009.

[8] I-Chen Wu, Dei-Yen Huang and Hsiu-Chen Chang,
"Connect6", ICGA Journal (SCI), Vol. 28, No. 4, pp. 235-
242, December 2005.

[9] Monte-Carlo Tree search, http://chessprogramming.
wikispaces.com/Monte-Carlo+Tree+Search.

[10] Shih-Chieh Huang, Remi Coulom, and Shun-Shii Lin,
“Monte-Carlo Simulation Balancing Applied to 9×9 Go,”
ICGA Journal, Vol. 33, No. 4, pp. 191-201, 2010.

[11] Shih-Chieh Huang, Remi Coulom, and Shun-Shii Lin,
“Time Management for Monte-Carlo Tree Search Applied
to the Game of Go,” International Workshop on Computer
Games, Hsinchu, Taiwan, November 18-20, 2010.

[12] Social network, http://en.wikipedia.org/wiki/Social_network.

[13] V-Taiwan, http://aigames.nctu.edu.tw/vtaiwan/.

