/ プログラム/ 発表一覧/ 著者一覧企業展示一覧/ jsai2017ホーム /

1A3-2 Depth and Complexity of Deep Generative Adversarial Networks

*セッションの無断動画配信はご遠慮下さい。

Tweet #jsai2017 このエントリーをはてなブックマークに追加

05月23日(Tue) 17:50〜19:30 A会場(ウインクあいち-2F 大ホール)
1A3 機械学習「機械学習-深層学習(1)」

演題番号1A3-2
題目Depth and Complexity of Deep Generative Adversarial Networks
著者ヤマザキ 裕幸(慶應義塾大学理工学研究科開放環境学専攻)
時間05月23日(Tue) 18:10〜18:30
概要Although generative adversarial networks (GANs) have achieved state-of-the-art results in generating realistic looking images, models often consist of neural networks with few layers compared to those for classification. We evaluate different architectures for GANs with varying depths using residual blocks with shortcut connections in order to train GANs with higher capacity. While training tend to oscillate and not benefit from additional capacity of naively stacked layers, we show that GANs are capable of generating images of higher visual fidelity with proper regularization and simple techniques such as minibatch discrimination. In particular, we show that an architecture similar to the standard GAN with residual blocks in the hidden layers consistently achieve higher inception scores than the standard model without noticeable mode collapse. The source code is made available on https://github.com/hvy/gan-complexity.
論文PDFファイル