/ プログラム/ 発表一覧/ 著者一覧/ 企業展示一覧/ jsai2012ホーム /

1K2-IOS-1b-5 A Density-based Approach for Positive and Unlabeled Learning

*セッションの無断動画配信はご遠慮下さい。

Tweet #jsai2012 このエントリーをはてなブックマークに追加

06月12日(Tue) 15:30〜20:00 K会場(-ゆ~あいプラザ山口県社会福祉会館/第1会議室(81))
1K2-IOS-1b International Organized Session「Application Oriented Principles of Machine Learning and Data Mining (2)」

演題番号1K2-IOS-1b-5
題目A Density-based Approach for Positive and Unlabeled Learning
著者Nattee Cholwich(Sirindhorn International Institute of Technology, Thammasat University)
Khamsemanan Nirattaya(Sirindhorn International Institute of Technology, Thammasat University)
Theeramunkong Thanaruk(Sirindhorn International Institute of Technology, Thammasat University)
Numao Masayuki(Osaka University)
時間06月12日(Tue) 17:40〜18:10
概要Positive and Unlabeled learning (PU learning) is a machine learning approach that focuses on generating a two-class classification model using only a set of positive examples, and a set of unlabeled examples. Various techniques have been proposed for PU learning. Most of the techniques try to detect a group of reliables negative examples from the given unlabeled examples. Then, a classification model can be incrementally built. In this paper, we propose a new technique for detecting the reliable negative examples based on the density of examples in the search space.
論文PDFファイル