/ プログラム/ 発表一覧/ 著者一覧/ 企業展示一覧/ jsai2012ホーム /

3P1-IOS-2a-1 Developing a Bayesian framework for human behavior tracking

*セッションの無断動画配信はご遠慮下さい。

Tweet #jsai2012 このエントリーをはてなブックマークに追加

06月14日(Thu) 09:00〜12:20 P会場(-ふるさと伝承センターみやび館/和室(1軒屋(50坪)))
3P1-IOS-2a International Organized Session「Alan Turing Year Special Session on AI Research That Can Change The World (1)」

演題番号3P1-IOS-2a-1
題目Developing a Bayesian framework for human behavior tracking
著者EL HAMDI Younes(JAIST)
Okamoto Takumi(JAIST)
CHONG Nak Young(JAIST)
SUH Il Hong(Hanyang University)
時間06月14日(Thu) 09:00〜09:30
概要In this paper, we study the problem of creating an inference mechanism to recognize and respond to human behavior. We provide probabilistic methods to build a new Bayesian framework to deal with human tracking problem. Specifically, we present a set of efficient algorithms that encompass the learning solutions for practical applications which cope with unreliable and noisy measurements. Unlike almost all of related works, we propose an efficient algorithm for sensing systems that presents an alternative to sensors that are sometimes perceived as invasive, where notably we do not use vision-based learning. Preliminary results show that the proposed system can be deployed in different environments and significantly outperforms existing methods in a very reliable manner.
論文PDFファイル